Microporous inorganic membranes for CO₂ separation

Izumi Kumakiri^{*}, Nicolas Lecerf and Rune Bredesen SINTEF Materials Technology, P.O.Box 124 Blindern, NO-0314 Oslo, Norway Fax: 47-22 06 73 50, e-mail: izumi.kumakiri@sintef.no

A MFI zeolite membrane shows CO_2/H_2 separation factor 34 at room temperature. While the separation ability decreased with temperature, the membrane showed CO_2 separation ability up to $200^{\circ}C$. H⁺ type and NH_3-H^+ type zeolite membrane showed almost the same permselectivity, suggesting the CO_2 adsorption occurs on to the zeolitic frame or surface silanol groups. The results suggest a possibility in separating CO_2 by enhancing the adsorption strength at high temperature.

Key words: CO₂ sequence, water gas shift, zeolite membrane, high temperature

1. INTRODUCTION

Hydrogen is a carbon free energy carrier and fuel for production of power by fuel cells and new gas turbines. Applying H_2 or CO_2 selective membranes in the water gas shift (WGS) reaction is a means to separate the products to H_2 and CO_2 .

 $CH_4 + H_2O \leftrightarrow CO + 3 H_2 - 206 \text{ kJ/mol (reforming)}$ $CO + H_2O \leftrightarrow CO_2 + H_2 + 41 \text{ kJ/mol (WGS)}$

The major difference between H_2 and CO_2 selective extraction by membranes is the H_2 pressure after the membrane reactor. In case of applying H_2 selective membranes, the H_2 pressure is lowered by the permeation and a compressor may be required before the turbine. On the other hand, employing a CO_2 selective membrane instead, H_2 is kept in the high-pressure lead stream (see Figure 1). In addition, non-converted CH_4 and CO are in the same stream as H_2 to be fed to the turbine. Accordingly, energy loss is expected to be smaller in the latter case.

Figure 1 Schematic image of the process

The technical challenge of CO_2 extraction is the development of a membrane having sufficient CO_2 separation ability under low temperature WGS conditions (c.a. 200-300 °C) in H2O vapor. Much study has been done on CO_2/N_2 separation targeting the CO_2 capture from waste gas. Various types of membranes, such as silica¹, zeolites², carbon or polymers³ have been examined. To enhance the selectivity, several modifications are also have been investigated^{2,4,5}. This work shows that CO_2/N_2 separation ability is sensitive to temperature and separation ability significantly drops with temperature. This is because the separation is dominated by CO_2 adsorption strength to the membrane materials. The same mechanism can be expected for the CO_2/H_2 separation⁶. Moreover, this is more difficult than CO_2/N_2 , as H_2 is a smaller molecule than N_2 and can permeate through pores that CO_2 cannot penetrate.

There are different approaches to reach CO₂ selective permeation. One is to use dense membranes having CO₂ selective transport ability (see left image of Figure 2). Nair *et al.* used molten carbonate as a CO_2 carrier⁷. They covered porous supports with molten Li2ZrO3, and obtained CO_2/N_2 separation factor about 5 at 600 °C. In principle, as the CO₂ permeation is based on a reaction, high CO₂ selectivity can be expected. Preferentially, lithiumcarbonate should be in a molten phase to obtain a faster reaction rate than what is possible in the solid phase^{8,9}. Accordingly, the operation temperature should be higher than 400 °C in order to have molten phase. It may be some difficulty in maintaining the molten carbonate on/in the support and thinner the molten layer thickness to obtain higher permeating flux.

Figure 2 Schematic image of CO_2 extraction by membranes (left: dense membrane case, right: porous membrane case)

The other approach is to enhance the CO_2 adsorption strength of the membrane materials (see right image of Figure 2). While CO_2 adsorption ability of zeolites or carbon is rapidly lost with temperature, some chemisorbents show

CO₂ adsorption at high temperature. Table 1 showing some data. Alkaline metal or alkaline earth-metal oxides (c.a. Li₂O, K₂O, Na₂O, CaO, MgO), alkaline metal carbonate (c.a. Li₂CO₃, Na₂CO₃) or amine groups have basic properties, and show strong affinity to CO_2 . Accordingly introducing such basic sites can enhance the CO₂ capture ability. By selecting polymers with amine groups, it is possible to have CO₂ separation ability with high capacity at higher temperature than zeolites. Temperature of c.a. 150-200 °C is, however a limitation due to the decomposition of polymer. On the contrary, inorganic materials have rather smaller CO₂ adsorption capacity, but the CO₂ adsorption can be achieved at higher temperature (c.a. 400°C). Some chemisorbents keep CO_2 adsorption ability even at low water vapor pressure^{13,14}.

Table 1 CO_2 adsorption properties onto various materials

Adsorben	P(CO ₂) (bar)	Adsorption amount (mmol/g-adsorbent)		
ts		Low temp.	75 °C	400 °C
Zeolite (H-MFI)	0.5	1.7 (30°C)	0.04 (103°C)	<<
Ammine sites (PEI on meso porous	1	. _	3	-
silica ¹¹	1			0.26
MgO	<u> </u>		0.15	0.50
Hydrotalc ite-like ¹³	1	0.23 (20°C)	(200 °C)	(300° C)
Li ₂ CO ₃ on alumina ¹⁴	0.67	real	-	2*
Na ₂ CO ₃ on alumina ¹⁴	0.67	-	-	1.4- 4.7*

*calculated assuming no adsorption to alumina

When applying these basic chemisorbents as membrane material, microporous structure is required to reject other molecules. As these sorbents hardly form microporous structure by themself, some standard mnicroporous membranes (c.a. silica, carbon and zcolite membranes) should be used as backbones and chemisorbents can be introduced by surface modification. Accordingly, membrane а preparation procedure can be 1) selection of proper candidate materials with enough CO₂ affinity at high temperature, 2) preparation of homogeneous sol, 3) preparation of microporous supports with well controlled pore size, 4) surface modification with control of chemisorbents layer thickness.

In this study, CO_2/H_2 separation has

been studied with zeolite membranes as a model system for CO_2/H_2 by adsorption selective separation.

2. EXPERIMENTS

Zeolite membranes

H-MFI zeolite crystals (Si/Al ratio of 10^{16} , pore size 5.1x5.4 Å) are synthesized hydrothermally to plug the pores of supporting materials (α -alumina, 0.2 μ m pore size). Detailed procedure is described elsewhere¹⁵. The membrane was of 150 mm length, formed in the inside top layer of the interior surface of a cylindrical support with effective membrane area of about 28 cm².

The zeolite crystals have H^+ form as prepared. Ammonia gas was introduced to the membrane to cover the acidic site.

The property of the prepared membrane was characterized by single gas permeation tests using H₂, CO₂, N₂ and CO₂/H₂ and CO₂/N₂ separation tests at room temperature to 400°C. The pressure difference was changed from 0.5 bar to 3.5 bar. All the measurements were performed by pressure drop method and no sweep gas was use. Before the permeation and separation tests, the membrane was heat treated to remove any adsorbed molecules. The pretreatment conditions are at 400°C under dry nitrogen flow for both sides of the membrane for more than 1 day. The heating rate was kept smaller than 2°C/min. The separation factor is calculated by equation bellow.

 $S_f(A/B) = (xA_{perm}/xB_{perm})/(xA_{feed}/xB_{feed})$ where xA, xB represents the molar ratio of component A and B, respectively.

3. **RESULTS and DISCUSSION**

 CO_2/H_2 separation with zeolite membranes at room temperature

Figure 3 shows the CO_2/H_2 separation property of a H-MFI membrane at room temperature. Separation factor (S_f) increased with CO₂ pressure in feed, and showed more than 30 at room temperature. Open keys show the flux obtained in single gas permeation, and closed keys show the flux in separation. CO_2 flux is almost the same in pure gas permeation and in separation with gas mixture. H₂ flux in separation is however, significantly smaller in separation compare to the single gas permeation flux. Apparently, H₂ permeation is hindered by co-existing CO₂. This suggests that pores of c.a. 5 Å diameter can be plugged by CO_2 molecules (3.3 Å) if the surface has a sufficient adsorption strength, and that H₂ (2.89 Å) can not pass in the pores.

Figure 3 CO_2 and H_2 permeation fluxes in single gas feed and in separation as a function of pressure difference at room temperature (open keys: pure gas feed, closed keys: 1:1 mixture as feed)

Influence of cation type of zeolite membranes

Ammonia molecules have basic property and adsorbs strongly on to the acidic H^+ site. H_2 , N_2 and CO_2 permeation are almost the same with ammonia molecules, while CH_4 permeation flux became smaller with ammonia. This suggests that H^+ site has strong influence on CH_4 adsorption, while the major CO_2 adsorption site is not the H^+ site.

Table 2 summarizes the CO₂ separation performance at room temperature. Separation factors show order of $CO_2/H_2 > CO_2/N_2 > CO_2/CH_4$. The CO₂ selectivity is lowered as the adsorption strength of counter molecule increases. On the contrary, the separation ability is not changed with ammonia.

The three major different adsorption sites are cation sites, silanol on the outer surface $(1-2 \text{ silanol groups/unit cell}^{17})$ and bridged oxygen in the zeolitic framework. Based on the little influence of cation type on permeation and separation properties, CO₂ adsorption on to the latter two sites are contributing the CO₂ plugging the zeolitic pores.

Table 2CO2separation ability at roomtemperature with 1 bar pressure difference

	CO_2/H_2	CO_2/N_2	CO ₂ /CH ₄
H-MFI	9.3*	4.9	~
	(1.9)**	(2.4)	
NH ₄ -MFI	9.5	4.2	3.4
	(1.9)	(2.4)	(4.3)

* Separation factor, ** Total flux $(mmol/m^2 s)$

Effect of temperature

Figure 4 shows the influence of temperature on CO_2/H_2 and CO_2/N_2 separation properties. The H_2 and N_2 fluxes increased significantly in the low temperature range (from room temperature to 150° C), and finally reached the same value as single gas permeation flux at 400 $^{\circ}$ C. Accordingly, the highest separation factor was achieved at the lowest temperature for both systems. The membrane showed CO_2/H_2 selectivity up to 200 $^{\circ}$ C, and CO_2/N_2 selectivity up to 400 $^{\circ}$ C. As the CO_2 adsorption to zeolites become decrease with temperature¹⁰, the pore

Figure 4 Effect of temperature on CO_2/H_2 separation (closed keys) and CO_2/N_2 separation (open keys) (1:1 mixture as feed, $\Delta P_{total}=1$ bar)

4. CONCLUSIONS and PROSPECTS

The model case with H-MFI zeolite membrane showed CO_2/H_2 separation ability; S_f above 30 at R.T.. The separation factor increased with pressure, while decreased with temperature. The membrane showed and CO_2/H_2 selective up to $200^{\circ}C$, and CO_2/N_2 up to $400^{\circ}C$.

The results show co-existing CO_2 hinder the H_2 permeation. Appling stronger CO_2 adsorbents on the microporous membrane surface, CO_2/H_2 separation ability will possibly be obtain at higher temperature. Acknowledgement

This work is founded by the Norwegian Research Council

References

[1] G.D. West, G.G. Diamond, D. Holland. M.E. Smith and M.H. Lewis, "Gas transport mechanisms through sol-gel derived temolated membranes", J. Membr. Sci. 203, 53-69 (2002)

[2] K. Kusakabem T. Kuroda and S. Morooka, "Separation of carbon dioxide from nitrogen using ion-exchanged faujasite-type zeolite membranes formed on porous support tubes", J. Membr. Sci., 148, 13 (1998)
[3] S. Kazama, T. Teramoto and H. Haraya, "Carbon dioxide and nitrogen transport properties of bis(phenyl)fluorene-based cardo polymer membranes", J. Membr. Sci. 207, 91-104 (2002)

[4] R. M. de Vos and H. Verweij, "Improved performance of silica membranes for gas separation", J. Membr. Sci. 143, 37-51 (1998)

[5] Y. Hasegawa, K. Watanabe, K. Kuskabe and S. Morooka, "Influence of alkali cations on permeation prooerties of Y-type zeolite membranes", *J. Membr. Sci.* 208, 415-418 (2002)

[6] K. Keizer, A.J. burggraaf, Z.A.E.P. Vroon and H. Verweij, "Two component permeation through thin zeolite MFI membranes", J. Membr. Sci. 147, 159-172 (1998)

[7] B.N. Nair, T. Yamaguchi, H. Kawamura, K. Nakagawa and S. Nakao, "Development of a novel membrane system based on Li_2ZrO_3 for high temperature CO₂ separation", proceedings of ICOM 2002, 07-12 July, Toulouse (2002)

[8] K. Essaki, K. Nakagawa and M. Kato, "Acceleration effect of ternary carbonate on CO_2 absorption rate in lithium zirconate powder", *J. Chem. Soc. Japan*, **109**, 829-833 (2001)

[9] J-I Ida and Y.S. Lin, "Mechanism of high-temperature CO2 sorption on lithium zirconate", *Environ. Sci. Technol.*, **37**, 1999-2004 (2003)

[10] T. Yamagzaki, M. Katoh S. Ozawa and Y. Ogino, "Adsorption of CO2 over univalent cation-exchanged ZSM-5", *Moleculare Physics*, **80**, 312-324 (1993)

[11] Z. Zu, C. Song, J.M. Andresen, B.G. Miller. A.W. Scaroni, "Preparation and characterization of novel CO2 moleculer basket adsorbents based on polumer-modified mesoporous molecular sieve MCM-41", *Micro. Meso. Mater.*, **62**, 29-45 (2003)

[12] Z. Young, V.G. Mata and A.E. Rodrigues, "Adsorption of carbon dioxide on chemically modified high surface area carbon-based adsorbents at high temperature", *Adsorption*, 7, 41-50 (2001)

[13] Z. Youngm V. Mata and A.E. Rodrigues, "Adsorption of carbon dioxide onto hydrotalcite-like compounds (HTlcs) at high temperature", *Ind. Eng. Chem. Res.*, 40, 204-209 (2001)

[14] T.R. Gaffney, T.C. Golden, S.G. Mayorga, J.R. Brzozowski and F.W. Taylor, "Carbon dioxide pressure swing adsorption process using modified alumina adsorbents", U.S. Patent, 5,97,36 (1999)

[15] O. Pachtova, I. Kumakiri, S. Miachon and J-A. Dalmon "Dynamic desorption of adsorbing species under cross membrane pressure difference: a new

defect characterisation approach in zeolite membranes", J. Membr. Sci, accepted [16] H. Jobic, "On the jump diffusion of molecules in zeolites measured by quasi-elastic neutron scattering", Micro. Meso. Mater., 55, 159-169 (2002)

(Received October 13 2003; Accepted March 31, 2004)