
Transactions of the Materials Research Society of Japan 29 [8] 3625-3630 (2004) 

Point defect energetics in silicon using the LDA + U method 
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We present the first principles results of point defect energetics in silicon calculated using the LDA + U 
method: a Hubbard type on-site interaction added to the local density approximation (LDA). The 
on-site Coulomb and exchange parameters were tuned to match the experimental band gap in 
Si. The relaxed configuration was obtained using the LDA; LDA+U was used only to calculate 
the energies. Our values of point defect energetics are in very good agreement with both recent 
experimental results and quantum Monte Carlo (QMC) calculations. 
Key words: Silicon, point defects, local density approximation, Hubbard, LDA+U 

1. INTRODUCTION 
Modeling techniques empower the investigator 

with the capability to explore into the details 
of natural phenomena with great dexterity, aptly 
complementing their experimental counterparts. 
Hierarchical multiscale modeling (HMM) is one 
such technique. We have recently investigated self 
diffusion in silicon-germanium alloys in consider
able detail by developing a database of first prin
ciples energetics and using the database to per
form kinetic Monte Carlo simulations: a typical 
HMM scheme [1]. The exponential growth in com
putational processing power makes such schemes 
more viable; the explosive growth in nanotech
nology provides technologically relevant platforms 
that are amenable to such schemes. 

Understandably, the accuracy of the results such 
as those presented in Ref. [1] hinges to a great ex
tent on the correctness of the energetics database. 
In that study, we used the popular local den
sity approximation (LDA) to develop the ener
getics database. However, the (approximately 1 
eV) discrepancy [2] between the theoretical acti
vation energy for Si self diffusion computed using 
the LDA (or the generalized gradient approxima
tion (GGA)) and the experimental values was an 
important reason that precluded us from making 
direct comparisons of our results with experimen
tal studies of self diffusion in SiGe alloys such as 
those in Refs. [3, 4]. 

Our present work is directed essentially at find
ing a means of developing a reliable point defect 
energetics database (like in Ref. [1]) using an as pa
rameter free a technique as possible. (While con
siderable progress has been made on techniques 
like the quantum Monte Carlo (QMC) method, it 
is beyond the current computational capacity to 
use it to develop a detailed energetics database 
as required for our HMM scheme.) We focus on 
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the activation energy for self-diffusion in pure Si. 
For self diffusion in Si, we consider the vacancy 
mechanism, the interstitialcy mechanism, and the 
concerted exchange mechanism. These three have 
been shown to be the most likely diffusion mecha
nisms in silicon [5, 6]. For the interstitialcy mech
anism, we consider the hexagonal to split (110) 
mechanism as this has shown to be the most likely 
mechanism [7]. 

This article is organized as follows: In Sec. 2, we 
provide the details of the LDA and the LDA+U 
calculations. In Sec. 3, we present the results 
of our calculations. We provide an intuitively ap
pealing explanation for the underperformance of 
the LDA. We then provide a brief overview of the 
LDA+U technique and discuss the results obtained 
using this method for the different diffusion mech
anisms. We summarize our article in Sec. 4. 

2. METHOD 

Self-consistent elic~ctronic structure calculations 
were performed using the plane-wave pseudopo
tential code VASP [8, 9, 10, 11] with the projec
tor augmented-wave (PAW) potentials [12] at a 
kinetic energy cutoff of 20 Rydberg. A 64 atom 
supercell was used. Electronic minimization was 
carried out to a tolerance of 2.7 x 10-5 eV and 
structures were relaxed until the maximum force 
on any atom was less than 0.015 eV /A. Saddle 
point configuration for the hexagonal to split (110) 
interstitialcy mechanism was determined using the 
nudged elastic band method [13]. Structural relax
ation was performed in two stages: initially with a 
23 Monkhorst-Pack [14] k-point sampling followed 
by a 63 Monkhorst.-Pack [14] k-point sampling. 
Energy calculations were done using tetrahedron 
method with a 6 x 6 x 6 division of Brillouin zone. 
The lattice constant of systems containing point 
defects (vacancy or interstitial) was determined by 
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fitting the total energy versus the supercell volume 
to Murnaghan's equation of state*. 

The plane-wave psedopotential code VASP [8, 
9, 10, 11] also has the option to perform calcu
lations by the LDA+U method. (A brief overview 
of the method itself will be presented in Sec. 3. 
Here we merely give the details of the parameters 
used in our calculations.) We have used the ro
tationally invariant LDA+U scheme according to 
Liechtenstein et al. [16]. The on-site interactions 
were added for the p-orbitals. The effective on site 
Coulomb interaction parameter (U) was set to 0 
e V and the effective on site exchange interaction 
parameter (J) was set to 4 eV. (We provide justi
fication for this choice in Sec. 3.) The LDA was 
used to perform structural relaxation; the LDA+U 
was used only to perform energetics calculation on 
the structure obtained using the LDA. We adopted 
this approach** because the LDA gives structutal 
properties ( eg. lattice constant, see Table I) that 
are closer to experimental values than the LDA+U. 

3. RESULTS AND DISCUSSION 
Table I summarizes the results of both the LDA 

and LDA+U calculations. It also contains exper
imental values and values from quantum Monte 
Carlo simulations where available. 

There is consensus on the values obtained within 
the LDA by different theoretical groups [18, 19, 7]. 
It can be seen that the LDA gives activation energy 
that is systematically lower than the experimental 
values. 

3.1 Local density approximation 
One of the main reasons for the underperfor

mance of the LDA is that it tends to overbind. Be
cause of this, the dangling bonds that are created 
due to the defects, tend to bind with each other 
and with other orbitals. Because of this overbind
ing, the energy of the system with the defect is 
lower than it should be in reality. Thus the dif
ference between the energy of the pure crystal and 
the one with the defects (which is in fact the for
mation or the migration energy, depending on the 
situation) is lower than it should be in reality. The 
reason for the LDA's overbinding can be traced to 
the spherical nature of the exchange hole. This 
leads to a larger negative value of the exchange 
energy and hence lowers the energy of the system 
much more than it should be in reality [20]. 

A related reason for the overbinding nature is 
the well-known underestimation of the band gap 
by LDA. From our LDA based calculations, we 
find that, for example, the Si with a vacancy has a 

band gap of only 0.88 eV in contrast to experimen
tal values of 1.12 eV. (We note that the band gap 
in pure Si from LDA calculations is even less: 0.56 
eV (Fig. 1). The system with the impurity has a 
higher band gap because of the interaction of the 
defect with the other atoms in the lattice. This 
can be seen from a ~imple tight binding analysis. 
We consider the band gap of the system with the 
defect because that is the environment that the de
fect "perceives".) Because of the small band gap, 
the defect states that are (usually) created in the 
band gap tend to interact more strongly with the 
valence states. This therefore leads to overbind
ing too. The band structure and the density of 
states of the system with a vacancy, hexagonal 
interstitial and split (110) interstitial are shown 
respectively in Figs. 2, 3, and 4. 

Table I: Theoretical results and experimental val
ues for the following properties[symbol](units) 
of silicon: lattice constant[Lo](A), va
cancy formation volumet(VJ](A3

), vacancy 
formation energy[E~](eV), vacancy migra
tion energy[ Et?']( eV), interstitial formation 
volumett[V/](A 3), hexagonal interstitial for
mation energy[EJuJ(eV), split (110) inter
stitial formation energy[E~1](eV), intersti
tial migration energy[Ej](eV), concerted ex
change migration energy[EC'x](eV). Numbers 
in [] indicate reference numbers. Quantum 
Monte Carlo results are from Ref. [17]. 

Prop. LDA Expt. QMC LDA+U 
La 5.4 5.43 [21] 5.27 
vJ 4.41 
E& 3.49 
Ev o.o3 
vf -2.77 

4.86 [22]* 
4.59 
0.42 

Efu 3.37 4.82 4.61 
E~I 3.34 4.68 [22]* 4.96 4.70 
Ej 0.18 0.44 
EC'x 4.56 5.78 5.82 

t vJ =Relaxation volume+ Atomic volume 
tt V/ =Relaxation volume- Atomic volume 
+ These values are the experimental estimates of 
the activation energy i.e., the sum of formation 
and migration energies. 

There are a couple of interrelated reasons for the 
LDA's underestimation of the band gap. The dis
continuity of the one-electron potential for local
ized states, which is a characterisitc of the exact 
density functional, is absent in the LDA as was 
shown by Perdew et. al. [23]. Because the band 

*The Murnaghan's equation of state [15] is a relation between the energy E and the volume V of the 
supercell and has the following form: E =Eo+ [(V- Vo)/b]- {[(V1-a- v~-a)Vaa]/[(1- a.)b]}. Eo, Vo, a., 
and b are the fitting parameters. 

**We would like to point out that Leung et. al. [17] take a similar approach: they calculate their structure 
using LDA and use QMC to compute the energetics. 
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gap can be expressed as 

Egap = E[N + 1] + E[N- 1] - 2E[N] (1) 

where E[x] is the energy of the system with x 
electrons, the absence of the discontinuity of one
electron potential in the LDA causes the LDA to 
give an incorrect band gap. The second reason 
for the underestimation of band gap within LDA 
is the absence of self interaction correction. The 
third reason has to do with the Kohn-Sham ap
proach [24] itself. In the Kohn-Sham theory, there 
is no direct relationship between the orbital en
ergies and the ionization energies (unlike that in 
Hartree-Fock theory) except for the highest occu
pied orbital. 

20r-----~----~--~-------, 

-LOA 

15 

> 10 
<11 
'-' 
>-
Cl 5 .._ 
<11 
c 
w 

0 

-5 

L G X WK G 

Figure 1: Si band structure computed using the 
LDA (solid line) and the LDA+U (dashed line) 
techniques. The (indirect) band gap using LDA 
(LDA+U) is 0.56 (0.95) eV. 

3.2 Local density approximation with Hubbard 
type correction: LDA+U 

The LDA+U method has been widely applied 
to metallic systems containing localized electrons. 
We refer the reader to the review article on 
LDA+U by Anisimov et. al. [25]. Here we pro
vide a brief explanation of the technique along the 
lines of "rectifying" the deficiencies of the local 
density approximation that were pointed out in 
Sec. 3.1 . The basic idea of the LDA+U method 
is to redistribute t.he electron-electron interaction. 
Because, as we explained in Sec. 3.1, overbind
ing of the localized electrons associated with the 
dangling bonds is a primary reason for the under
performance of the LDA, a direct way of rectifying 
this deficiency would be to add an on-site Coulomb 
repulsion term while subtracting an average overall 

electron-electron interaction. 

HLDA+U HLDA 

+ t i=~;<i Uii (/ lwi(r!)l
2 

dr1) 

x (/ l'tPi(r2)1
2 

dr2) 

UN(N -1) 
2 

(2) 

where N = L:~1 J i·~Ji(rW dr corresponds to the 
total number of electrons in the system. The pa
rameter U is adjusted by trial and error so that the 
resulting band gap equals the experimentally ob
served band gap of the system in question. The 
above technique, which only has the Coulomb 
term, is generalized to include the exchange term 
as well. We refer the reader to R.efs. [16, 26] for 
more details. The UN(N- 1)/2 term introduces 
the discontinuity of the one-electron potential. We 
wish to point out that the LDA + U does not cor
rect for the self interaction. 

As mentioned in Sec. 2, we have used the scheme 
as implemented in VASP for our calculations. Ide
ally, the Coulomb (U) and exchange (J) interac
tion parameters would be chosen so that the band 
gap for the bulk system would be equal to the 
experimentally observed band gap. However, be
cause our calculations are based on a supercell ge
ometry, there is an inevitable but unphysical inter
action between the defect and the matrix. This al
ters the band gap from that in the bulk. However, 
because the system "sees" only this band gap, we 
have chosen U and J so that the band gap in the 
system with the defect is close to the experimen
tally observed band gap. This, of course, would 
mean that the parameter be tuned for each type 
of defect. However, for the sake of demonstration, 
we have worked with a single set of parameters. 

We find that the defect formation and migration 
energies increase almost linearly with the differ
ence: U - J. The best agreement between the 
above energies and the experimental data occurs 
when the calculated band gap corresponds to the 
experimental one. (This occurs when we choose 
U = 0 and J = 4eV as mentioned in Sec. 2.) This 
supports our argument that the correction of the 
density functional for the bandgap (discontinuity 
of the potential on the number of electrons) should 
improve the results. Table I summarizes our ener
getics calculations. Figs. 1-4 show band structures 
and densities of states of the various systems con
sidered. 

3.3 Defect structure, symmetry, states and energy 
Vacancy: There is an inward relaxation of the 
atoms around the vacancy site. The symmetry of 
the vacancy determines the impurity states' sym
metry. The singlet s-state is located deep inside 
the valence band (not shown in Fig. 2) while 
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Figure 2: Band structure and density of states of a system containing a vacancy computed using the LDA 
(left) and the LDA+U (right) methods. The defect states are shown as dashed lines. The (indirect) band 
gap using the LDA (LDA+U) is 0.88 (1.21) eV and the vacancy dispersion using the LDA (LDA+U) is 0.77 
(0.71) eV. The bottom vacancy state is doubly degenerate. 

partly occupied triplet p-states are located in the 
bandgap (Fig.2). There is a splitting of p- states 
into twofold degenerate lower band and a single 
upper band (almost unoccupied). There are a few 
major differences between the LDA results and the 
LDA+U results. First, there is the expected in
crease in the bandgap in the LDA+U compared 
to the LDA leading to the separation between 
the vacancy states and valence and conduction 
bands. Second, the dispersion of vacancy p-states 
is smaller in the LDA+U calculation. Thus, these 
states are more localized in the LDA+U calcula
tion. The dispersion cannot be removed in the 
supercell geometry completely, but the LDA defi
nitely seems to overestimate the itinerancy of elec
trons in the vacancy states. There is no notice
able Jahn-Teller distortion of the atoms surround
ing the vacancy in our 64-atom supercell geometry. 
This is consistent with the observation by Zywietz 
et. al. [27] who suggest that a 128-atom super
cell is required to observe the distortion. The for
mation and the migration energy for the vacancy 
defect from LDA+U calculations are 4.59 eV and 
0.42 eV respectively. This is in good agreement 
with experimental results [22, 28] 

Hexagonal interstitial: The self interstitial sites 
provide four additional electrons to the system and 
create similar "dangling" bonds. Like the vacancy, 
they create an almost doubly degenerate band near 
the bottom of the band gap and a single band near 
the top of the band gap (Fig. 3). The occupied de
fect states are very close to the bottom of the band 
gap, in agreement with the observation made by 
Needs [7] about the defect states being quite shal
low. We find that the atoms surrounding the in
terstitial move outwards in contrast to the inward 
movement reported by Needs [7]. This is proba-

bly because, while we have optimized the lattice 
constant of the system with the defect, Needs has 
maintained the lattice constant at the experimen
tal value. We suspect that Needs' approach might 
cause an unphysical restriction on the relaxation. 
In addition to opening the band gap, the intro
duction of the on-site repulsion quite dramatically 
reduces the mixing of the defect states with the va
lence states. The formation energy for the hexag
onal interstitial using the LDA+U method is 4.61 
e V which is in good agreement with experimental 
[6] and quantum Monte Carlo [17] results. 

Split (110) interstitial: The split (110} interstitial 
creates defect states in the band gap similar to 
the hexagonal interstitial excpet that there is a 
greater splitting of the two lower bands (Fig. 4). 
We attribute this to the lower symmetry of the 
split (110) interstitial compared to the hexagonal 
interstitial. Another difference is the location of 
the higher defect state. It is not as close to the 
top as in the case of hexagonal interstitial. We do 
not have a simple t>.xplanation for this. The intro
duction of the on-site repulsion has a similar effect 
with respect to reducing the mixing of the defect 
states with the bulk states. The defect formation 
energy using the LDA+U method is 4.70 eV which 
is in good agreement with the experimental [6] and 
quantum Monte Carlo [17] results. The migration 
energy from the hexagonal to the split {110) con
figurations of the interstitial was computed using 
the nudged elastic band menthod [13]. We get a 
value of 0.44 eV using the LDA+U method. We 
are not aware of any experimental result for this 
specific value. 

3.4 Self diffusion in Si 

The contribution of the mechanism to the diffu-
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Figure 3: Band structure and density of states of a system containing a hexagonal interstitial computed 
using the LDA (left) and the LDA+U (right) methods. The defect states are shown as dashed lines. The 
(indirect) band gap using the LDA (LDA+U) is 0.70 (1.01) eV. The amount of mixing of the defect states 
with the valence states drops in the LDA+U method, signifying lesser binding. 
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Figure 4: Band structure and density of states of a system containing a split (110) interstitial computed 
using the LDA (left) and the LDA+U (right) methods. The defect states are shown as dashed lines. The 
(indirect) band gap using the LDA (LDA+U) is 0.99 (1.12) eV. The amount of mixing of the defect states 
with the valence states drops in the LDA+U method signifying lesser binding. 
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sion process is determined by the activation energy 
and the prefactor. Because all the three mecha
nisms considered in this article (viz., vacancy, in
terstitial, and concerted exchange) involve similar 
number of atoms, one can, to a first approxima
tion, assume that all of them have similar entropic 
effects and hence similar prefactors. Thus, based 
on our calculations of the activation energies us
ing the LDA+U method, the vacancy mechanism 
[which has an activation energy of 5.01 eV (sum of 
formation (4.59 eV) and migration (0.42 eV) ener
gies)] and the hexagonal to split (110) interstitialcy 
mechanism [which has an activation energy of 5.14 
eV (sum offormat.ion (4.7 eV) and migration (0.44 
eV) energies)] are quite close in activation energy 
(within the error of the method), and should con
tribute equally to self-diffusion. The concerted ex
change mechanism (which has an activation energy 
of 5.82 eV) is less significant in this respect. Ex
perimental results give a similar indication [6, 29]. 

4. SUMMARY 
The present work identified the cause for the 

poor description of point defect energetics by the 
LDA. It corrected for the deficiencies of the LDA 
by using the LDA+U method. This gave much 
better agreement of the calculated activation ener
gies with experimental observations. This method 
can therefore be used for better description of dif
fusion in similar semiconductor materials. 
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