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We review recent development of algorithm for linear response functions of quantum sys­
tems described by a very large Hamiltonian matrix. These numerical methods are combi­
nations of numerical solution of the time-dependent Schroedinger equation, random vector 
representation of trace, and Chebyshev polynomial expansion of Fermi- and Boltzmann­
operators, whose application includes optical absorption of nanocrystallites, and electron 
spin resonance (ESR) spectrum of one dimensional antiferromagnets at finite temperature. 

I. INTRODUCTION 

Computational physicists often face to problems of 
calculating the linear response functions or the real­
time Green's functions of quantum manybody systems 
with degree of freedom N "' 106 or more. Direct diago­
nalization of the Hamiltonian matrix is the most naive 
and powerful method for modest system size N ::;; 103

. 

However, it becomes prohibitive for larger system be­
cause the computational time grows as N 3

. Therefore 
efficient numerical methods, such as Quantum Monte 
Carlo methods, Lanczos Methods, and Kernel Poly­
nomial Methods have been developed and applied to 
various problems. 

Quantum Monte Carlo methods (QMC)[1, 2] can 
generate the Green's functions of very large systems 
since QMC does not need to store the wave functions. 
They have been successfully used for evaluating the 
imaginary-time Green's functions and, therefore, var­
ious thermodynamic quantities. However, for evalu­
ating dynamical quantities such as AC conductivity, 
one has to rely on numerical analytic continuation (e.g. 
Maximum Entropy Method [3] ) to obtain the real-time 
Green's function from the imaginary-time one. This 
procedure is not straightforward because the statisti­
cal errors are amplified by numerical analytical contin­
uation and the default model for the MEM must be 
assumed a priori. 

Lanczos Methods (LM)[4, 5] have been useful tech­
niques for evaluating dynamical responses of relatively 
large systems. The LM uses Lanczos recursion formula 
with Matrix Vector Multiplications (MVM), l<P') = 
H[<fJ), to tridiagonalize the Hamiltonian matrix, which 
leads to a continued fraction representation of the real­
time Green's function. The drawback of LM is numeri­
cal instability for large numbers of MVM's, which orig­
inates in the algorithm. Recently, LM was extended to 
finite temperatures (Finite Temperature LM, FTLM) 
by introducing random sampling over the ground and 
excited eigenstates [6]. However, FTLM has a weak 
point that the number of excited eigenstates to be cal­
culated increases rapidly as temperature or system size 
becomes large. Therefore reduction of computational 
costs by exploiting symmetries of the system becomes 
crucial. 

Kernel Polynomial Method (KPM) [7, 8] calculates 
density of states and linear response functions by using 
Chebyshev polynomial expansion [9-11] of broadened 
delta functions. The Chebyshev polynomials are ob­
tained through Chebyshev recursion formula by using 
MVM's. Unlike Lanczos recursion, Chebyshev recur­
sion is free from the numerical instability observed in 
Lanczos recursion even for large numbers of MVM's. 
The use of KPM for linear response functions has been 
limited to the ground state calculation. 

Time-Dependent method [12] is one of the most effi­
cient and direct methods for calculating the real-time 
Green's functions and linear response functions, and 
has been successfully applied to electric conductivities 
of amorphous arroys, specific heat of quantum spins, 
etc. 

Fermi-Weighted Time-Dependent Method 
(FWTDM) [13, 14] is a combination of time­
dependent method, random vector representation of 
trace [15], and Chebyshev polynomial expansion of 
step function fJ(EJ - H) to extract occupied and 
unoccupied one-particle states of noninteracting fermi 
particles in the ground state. This method was 
successfully applied to optical absorption of silicon 
and carbon nano-crystallites[14]. 
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Boltzmann-Weighted Time-Dependent Method 
(BWTDM)[16], calculates linear response functions at 
finite temperatures by using the Boltzmann-weight 
operator. The BWTDM has an advantage to FTLM 
that the computational time does not increase as 
temperature increases, because BWTDM does not 
calculate any eigenstates at all. Therefore BWTDM 
does not need use of symmetries and can easily treat 
disordered systems. 

II. TIME-DEPENDENT SCHRODINGER 
EQUATION 

With the increasing availability of high performance 
computers, the development of efficient numerical 
methods [17, 18] of the time-dependent Schroedinger 
equation (TDSE) [19) 

(1) 
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has become an important task in various fields of 
physics such as scattering theory, quantum chaos, 
laser-atom/molecule interaction and so on. In this 
section, we study numerical methods for calculating 
TDSE with a time-independent Hamiltonian H rep­
resented by an N x N Hermitian matrix and a wave 
function 1</J, t) represented by N -dimensional complex 
vector. The atomic units h = me = e = 1 are used 
throughout this article. The eigenstates of the Hamil­
tonian are denoted as 

HI Em) = EmiEm), (m= 1, 2, · · · , N) (2) 

wile the range of energy spectrum is defined as 

b.Egrid = Emax - Em in, (3) 

where Emax = max[{Em}] and Emin = min[{Em}] 
are the largest and smallest eigenvalues of H. Here 
we define the normalized Hamiltonian by shifting the 
origin of energy and rescaling the unit of energy. 

H _ H- (Emax + Emin)/2 
norm- (Emax- Emin)/2 

(4) 

which has the eigenvalues in the range of [-1, +1]. 
Hereafter we use Hnorm in place of H, and write it 
simply as H by omitting the subscript. 

The formal solution of (1) is expressed by the time­
evolution operator, i.e., the matrix exponential func­
tion [19] 

1</J, t + b.t) = exp ( -iH b.t) 1</J, t) (5) 

Various schemes have been proposed to approximate 
this exponential function [20-22]. The simplest scheme 
called Euler scheme (EU) expands the exponential 
function to the first order of H b.t, 

1</J, t + b.t) = (1- iH b.t)i</!, t) + O((H b.t)
2
), (6) 

and uses (6) repeatedly to obtain 1</J, t + nb.t(. This is 
an explicit scheme, which does not need matrix inver­
sion; but it is numerically unstable due to the lack of 
the time reversal symmetry (t --> -t). Moreover it is 
not unitary. 

To avoid this instability, the Crank-Nicholson 
scheme (CN) has been widely used in which the expo­
nential function is approximated by the Caley trans­
form 

I"' t + b.t) = (1- iH b.t/2) I"' t) + O((H b.t)3) (7) 
'~-'' (1 + iH b.t/2) '~-'' ' 

This scheme is unitary, unconditionally stable, and ac­
curate up to (Hb.t)2

• However, this implicit method 
is prohibitive when the band width of the Hamiltonian 
is large because the memory and CPU time for solving 
the linear equation increases as O(N2

). Therefore the 
development of explicit stable integration methods has 
been desired. 

One of these explicit methods is the Suzuki-Trotter 
scheme [21, 23]. 

Another is the symmetrized version of the EU, which 
is called the second order differencing scheme (MSD2) 
[22], 

i<P,t + b.t) - 1</J, t- b.t) = -2iH b.tirf;>, t) + O((H b.t)~) 

This scheme is symmetric in time and shown to be 
conditionally stable [22]. Furthermore, the scheme is 
accurate up to (H b.t)2

• . 

The more accurate and stable method is the Cheby­
shev scheme (CH) [20]. This method is classified as a 
global propagator method. It uses very long time steps 
and sometimes completes the calculation with a single 
time step. 

The CH is very accurate and the error can be re­
duced up to the machine precision. The only shortcom­
ing of the CH is that the intermediate wave functions 
are not available, while the stepwise methods, such as 
the CN and the MSD2, produce the wave function at 
each time step. 

Let us study the stability and error of the various 
schemes by computing the time-evolution of the eigen­
states !Em). Note that (6-8) contain only unit matrix 
and Hamiltonian matrix. Therefore, preparing the ini­
tial wave function as one of the eigenstates, the wave 
function remains in the same eigenstates during the 
time evolution. Then we define the growth factor 9 as 

(9) 

where 9 is a complex number. The exact time­
evolution should give the growth factor as 

9 = exp ( -iEmb.t) (10) 

However, an approximate scheme will give the growth 
factor of general form 

9 = 191 exp (-iEmb.t + iEphase). (11) 

If 191 i= 1 then the scheme becomes numerically un­
stable and the error in norm grows up exponentially as 
I91Nstep -1, where Nstep is the number of time steps. If 
191 = 1 then the norm is conserved and the accumulat­
ing error appears only in the phase error £phase· Note 
that phase error accumulates after Nstep time evolu­
tions as 

Ephase(t = Nstepb.t) = Ephase(t = b.t)Nstep (12) 

which does not growy exponentially but linearly in 
time. Therefore phase error can be regarded as the 
error in eigenenergy. 

The growth factor equation for EU is obtained by 
introducing (9) in to (6), 9 + ib.t - 1 = 0, where b.t 
is the dimensionless time step. Then EU is found un­
conditionally unstable for a finite time step D.t > 0, 
191 = v1 + (D.t) 2 > 1. 

The growth factor equation of CN becomes 9 = 

~~;~:;;, and CN is found unconditionally stable for 

any b.t 191 = 1 
The growth factor equation for MSD2 becomes 92 + 

2ib.t9 - 1 = 0 whose solutions are 9± = -ib.t ± 
v1 - b.t2 If and only if the stability condition lb.tl ::; 1 
is satisfied, the scheme is stable 19± I = 1. 

The phase error under the stability condition can 
be estimated by the Taylor expansion of the time­
evolution operators in (7) and (8), 

CN 1 ( 3 Ephase = 
12 

b.t) Nstep (13) 

MSD2 1 (!:J. )3 Ephase = - 6 t Nstep (14) 
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Ill. RANDOM VECTOR 

A uniform random vector is defined by 

N 

Jg>) = L Jn)~n (15) 
n=l 

where {In)} is the basis set used in the computation 
and ~n are a set of random variables generated by a 
subroutine, which satisfy the statistical relation 

( ( ~n ) ) 

(( ~~~~n )) 

0 

Here ( ( · ) ) stands for the statistical average. 

(16) 

(17) 

This random vector may be also expressed by the 
eigenstates of H, 

N 

Jq>) = L IEn)(n· (18) 
n=l 

Although we do not know the actual value of (n and 
I En), we can derive the statistical relation of (n as 
follows. 

(19) 
l=l 

N 

(~ = L~i(lJEn)· (20) 
l=l 

Then the statistical relation of (n is derived as 

N 

(( (n )) = L(Enll) (( 6 )) = 0 (21) 
l=l 

N N 

L L(l'JEn1 )(Enll) (( ~~~~~ )) 
l'=ll=l 

N 

L(Enll)(lJEn') = (EniEn') = 8n'n(22) 
l=l 

We can easily notice that the random vector contains 
all eigenstates of the Hamiltonian with equal probabil­
ity. Therefore the random vector (15) represents the 
system at a very high temperature. 

The statistical average of (g>JXJg>) gives the trace of 
X as follows: 

( ( (q>IXIq,) ) ) (23) 
·n 

n,n1 

in the eigenstate basis representation. 
The second term in (23) gives the statistical fluctua­

tion when the statistical average is evaluated by using 
random vectors. The order of the fluctuation is es­
timated as follows(24]: Assuming all non-zero matrix 
elements have the value of order 1, the first term in 

(23) becomes order of N, while the second term be­
comes order of VN for sparce matrices because the 
the number of non-zero matrix elements is order N for 
sparce matrices and the order of fluctuation is propor­
tional to the square root of it. As a result, the relative 
statistical error will be order of VN/N = 1/-/N. For 
example, the statistical error becomes order of 10-3 

for N = 106 , which can be considered as small. If the 
statistical fluctuation is not small enough with a set of 
random vectors, the calculation can be repeated with 
M sets of random vectors for reducing the fluctuation 
to order of 1/v'MN. When the spectral density such 
as DOS and linear response function, the dimension of 
matrix N in the above estimation should be replaced 
by Net f, the number of resonaces with in the spectral 
resolution 'fl, e.g. Neff = p(w)'f/ in case of DOS. There­
fore to reach the same accuracy we need more random 
vectors for higher energy resolution or low tempera­
tures. See Ref. (15] for more sophisticated analysis of 
this statistical fluctuation. 

Next, we try to simulate the Fermi degenerated 
ground state of a non-interacting many-electron sys­
tem by a single one-particle wave function, and use this 
wave function to calculate the linear-response function 
of the system. We define a projected random vector 
by applying the projection operator B(EJ- H) to the 
random vector, 

(25) 

The projected random vector may be also expressed by 
the basis set {!En)}, 

Jq> EJ) = L IEn)(n (26) 
EnSEJ 

where E f is the Fermi energy. Then the statistical 
average of (g> EJ IXJq> EJ) gives the sum of contributions 
from each occupied states 

L (EniXIEn) = tr(B(Et- H)XJ (27) 
En<C,Ej 

Boltzmann-weighted random vectors, iq,Boltz) = 
e-iJH/2Jq>), and numerical solution of the time­
dependent Schrodinger equation. 

IV. CHEBYSHEV POLYNOMIAL 

Function of matrix H, f(H), can be expanded by 
Chebyshev polynomials (11], 

NcH 

f(H)If/J) = L anTn(H)if/J) (28) 
n=O 

where Tn(x) are the Chebyshev polynomials of n-th 
order, and an are the expansion coefficients. 

In the case of f(H) = exp( -iHt), ao = Jo(t) and 
an= 2(-itJn(t),(n > 0) (9, 25] where Jn(x) is the 
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Bessel function of the first kind. The order of Cheby­
shev expansion NcH is taken large enough to obtain 
good convergence. 

In the case of f(H) = exp( -f3H), ao = Io(f3) and 
an = 2In(f3), (n > 0) [9] where In(x) is the modified 
Bessel function of the first kind. 

In the case of f(H) = e(EJ- H), ao = 1- r/Jtfn 
and an = 2gm sin(mrfJJ )/mn, (n > 0) where 9m is the 
damping factor [26] 

The Chebyshev polynomial of n-th order Tn(x) is 
calculated by the Chebyshev recursion formula, 

Tn+l(H)\rp) = 2HTn(H)\rfJ)- Tn-l(H)\rf;). (29) 

V. NANO-CRYSTALLITE 

In this section we introduce the Projection Method 
for linear-response function . First we review a simple 
derivation of the linear-response function by using full 
many-body state. Second we introduce the projected 
random vector, which simulates the ground states of a 
non-interacting many-electron system by a single one­
particle wave function. Then, combining these two 
concepts, we derive a fast algorithm for the linear­
response function of a non-interacting many-electron 
system. 

The linear-response 6B(t) to an impulse of pertur­
bation A6(t) forced on a quantum system described by 
the Hamiltonian H is calculated as 

(30) 

and the Fourier transformation of 6B(t) gives the linear 
response to the perturbation Ae-iwt 

XBA(W + i'l)) = 1Tdt e+i(w+i'IJ)t6B(t) (31) 

where the imaginary part of frequency 'I) is intro­
duced to limit the integration time to a finite value 
T = -In 6/ 'I) with 6 being the relative numerical accu­
racy of Eq. (31). 

By introducing the projected random vector (26) 
into \r/J(o)) in (30) and then into (31), we obtain our fi­
nal result, i.e., the linear response of a non-interacting 
many-electron system, 

XBA(W + i'l)) = ((1Tdt e+i(w+i'IJ)t6B(t) )) (32) 

where 6B(t) represents the sum of the response from 
each electron below the Fermi energy, which is defined 
by 

6B(t) = 2 Im(if>E
1

\e+iHtBe-iHt(J(H- Et)A\if>E
1

). (33) 

In (33), another projection operator (J(H- Et) has 
been introduced to ensure that the excited states 
should be higher than the Fermi energy. 

For calculating (32) and (33), we start with one re­
alization of the random vector (15), and calculate two 
wave functions, 

\rp(O); t) 

\6rp; t) 

e-iHt\if>Et) 

e-iHt(J(H- Et)A\if>E
1

) 

(34) 

(35) 

5 I 

~ 
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FIG. 1: Optical absorption coefficient of hydrogenated 
Si nanocrystallites (i) Sho5oH498, (ii) Sil632H666, (iii) 
Si4o4sH11s2, (iv) Sis12oH195o, and (v) Sh3464H273o. and 
(vi) bulk Si with 13824 Si atoms. Zero points of the 
y-axis are shifted as shown by the horizontal lines. Sev­
eral peak positions are denoted by the arrows[28J. 

where the time evolution is calculated by the leap frog 
method [17] and the projection operators are calcu­
lated by the Chebyshev polynomial expansion [13, 27]. 
At each time step, the response (33) and its Fourier 
transformation (32) are evaluated. Since the leap frog 
method and the Chebyshev polynomial expansion con­
sist of the matrix-vector operation H\rf;) whose com­
putational efforts are of Order(N) for sparse Hamilto­
nians, the total computational effort also becomes of 
Order(N). 

Figure 1 shows the calculated absorption coefficient 
spectra given by K = 2wkfc withthe complex refrac­
tive index defined by n + ik = e112[28]. 

VI. NAND-MOLECULAR MAGNET 

In this section, we apply BWTDM to study Electron 
Spin Resonance spectrum of one-dimensional s = ~ an­
tiferromagnet Cu benzoate Cu(C6H5C00)2 · 3H20, 
especially the dynamical crossover between spinon ex­
citation and breather excitation as a function of tem­
perature. Nonperturbative analytical calculation of 
this phenomena is a very difficult problem which still 
open. Even within Sine Gordon theory, the linear re­
sponse functions have been studied only at high tem­
perature regime (by perturbation) and at zero temper­
ature. We compare our numerical results with preced­
ing experimental and theoretical studies [29-39]. 

The effective Hamiltonian of one-dimensional s = ~ 
antiferromagnet Cu benzoate may be written [36-38] 
as 

Nspin 

H L [ Jsj · Sj+l - 9/.l,BHxs'J + ( -1)j 9ttBhsJ~6) 
j=l 

The first term is the isotropic Heisenberg antiferromag­
net where Sj is spin operator at the j-th site, J /kB = 
17.2K = 1.48(meV) is the exchange interaction [29], 
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1.1 

Ol 

FIG. 2: ESR spectra of normal polarization, JZ(w), 
calculated with (3 = 2 ~ 16, Hx = LO, Nspin = 16, 
'f) = 0.01 and Nrand = 16. S and B1 stand for spinon 
excitation and first breather excitation, respectively. 

and the sums are taken over Nspin spins with periodic 
boundary conditions. The second is the normal Zee­
man term due to the external uniform magnetic field 
Hx. The third is the staggered Zeeman term due to in­
duced staggered magnetic field h = 0.065Hx originat­
ing from the Dzyaloshinskii-Moriya (DM) interaction 
and the staggered component ofthe g tensor[34]. In the 
following we assume that g = 2.25(2.29) with Hx along 
c(c")-direction. Unit of magnetic field and frequency 
become J/9c/-£B = 11.4(T), Jfgc"J-!B = 11.2(T), and 
Jjh = 359(GHz), respectively. 

According to the linear response theory, absorption 
of electromagnetic waves of frequency w and polariza­
tion 1-£ is expressed as 

" H'kw " I (w) = -
2
-x""(q = O,w) (37) 

where HR is the amplitude of the electromagnetic 
waves and X~" ( q, w) is the imaginary part of the d y­
namical magnetic susceptibility, 

X~"(q,w) = (1- e-/3w) Im lim {oo dte-i(w-iry)tg~(t) 
11~+0 lo 

(38) 

at inverse temperature (3 = 1/(kBT). The correlation 
function is defined by 

g~(t) = Tr [e-/3H M~qe+iHtM~qe-iHt] /Tr [e-flH] 

(39) 

where the magnetization operator is 
LNspin J.L~ 

j=l Sj yiNspin. 

The essence of BWTDM is evaluation of eq. (39) 

by using Boltzmann-weighted random vectors, 
I<PBoltz) = e-flH/2I<P), and numerical solution of the 
time-dependent Schrodinger equation. 

In real calculation, we first generate N complex 
random numbers ~n and construct I<P) according to 
eq. (15). The I<PBoltz) can be computed with numer­
ical stability by applying eq. (28) repeatedly to I<P). 
Then (<PBoltzi<PBoltz) gives a sample of the denomi­
nator of eq. ( 40). Here, we introduce another vector 
I<PM" ) = M~qi<PBoltz) and calculate the time evolu-+q 
tion of I<PBoltz) and I<PM" ) by eq.(8). At each time +q ' 
t = nf:.t, the matrix element (<PM" ;tiM~qi<PBoltz;t) +q 
gives a sample of numerator of eq. (40). After calcu­
lating the denominator and numerator for Nrand ran­
dom vectors, the ratio of their averages gives g~(t) of 

eq. ( 40). Then x~" (q, w) with a finite frequency reso­
lution 'f) is calculated by using Gaussian filter, 

where Tmax is related to 'f) by Tmax ~ 'f)- 1
. In order 

to avoid finite size effect of spinon excitations, T max 

is chosen so that Tmax < Nspin/Vspin where Vspin ~ 1 
is the spin wave velocity [38]. This limits the finest 
frequency resolution. Note that this is not the limit 
due to the algorithm but due to the finite size model. 
Much finer resolution can be used for breather modes, 
which are spatially localized. 

Figure 2 shows the ESR spectra of normal polar­
ization (Faraday configuration) JZ(w) calculated with 
various temperatures. At high temperatures ((3::; 5), S 
is outstanding in the spectrum, and its peak shifts to 
higher frequency and becomes broadened as temper­
ature decreases while B1 becomes narrower. At low 
temperatures ((3 2: 5), B1 prevails while its peak fre­
quency is almost constant and its width becomes much 
smaller than the numerical resolution 'f/· This crossover 
behavior between spinon excitation and first breather 
excitation has become computable by the invention of 
BWTDM, and the result is consistent with both exper­
imental [30] and field-theoretical results [34]. Several 
other weak peaks appear in our results as well as in 
experimental results, which are supposed to be higher­
order breathers and transitions between excited states. 
However, we are not going to an:alyze them here. 

In summary, we developed an efficient and stable 
algorithm for linear response functions at finite tem­
peratures, and studied the ESR spectra of s = ~ an­
tiferromagnet Cu benzoate for a wide range of tem­
perature and magnetic field. We reproduced exper­
imental results of the spinon-breather crossover as a 
function of temperature. Temperature dependence of 
the width and shift of the peaks are also calculated, 
which are consistent with experiments and analytical 
theories. The calculated frequency of B1 as a function 
of Hx agrees well with both experimental and field­
theoretical results at low fields, and reproduces the 
deviation of experimental results from the Sine Gor­
don theory at high fields, where the low energy as­
sumption of the Sine Gordon theory may be broken 
and the choice of the compactification radius R be­
comes ambiguous[35]. The advantage of BWTDM is 
being applicable to finite temperatures, strong mag­
netic field and high frequency while its weak point is 
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finite size effects (Nspin ::; 20). The computational cost 
of BWTDM is moderate. Calculation of one curve in 
Fig. 1, for example, requires approximately 30 min­
utes with 8 CPU's of Fujitsu VPP5000 vector-parallel 
computer. 
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