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We report an analysis on electron transport in nanostructured semiconductors within the tight-binding 
framework. We employ the Chebyshev expansion to calculate the time-evolution of single-electron wave 
function. The mean-square displacement and diffusivity of electron in Si chains are obtained for atomic 
orbitals taken as initial states. The results show ballistic behavior of electron in the pure Si chain. 
Substitution of impurity atom (Ge) reduces the ballistic regime due to impurity scattering. 
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1. INTRODUCTION 
Recent progress in nanotechnology has made electron 

dynamics in nanostructures extremely important. For 
example, FET that consists of one semiconducting 
single-wall carbon nanotube has been fabricated [ 1]. 
Electron transport in such nanoscale devices has shown 
essential differences in its mechanisms from those 
described by conventional approaches for bulk 
semiconductors. Most of the theoretical approaches to 
electron dynamics in bulk semiconductors have been 
based on the effective mass method, which has been 
quite successful for their macroscopic properties. 
However, the standard effective mass method cannot be 
applied to nanostructures, because the method describes 
only the envelope of electron wave functions and 
neglects interband electron transitions. In the present 
study, we use the Heisenberg operator for electronic 
positions to calculate electron dynamics following the 
idea D. Mayou et al.[2,3,4] have developed. In Ref. 2, 
the authors calculated DC conductivity of quasicrystals 
using Kubo-Greenwood formula. They adopted the 
Chebyshev expansion for calculating efficiently the 
Heisenberg operator. The same technique has been 
applied to an analysis on the electron diffusivity in a 
grain boundary of SiC [5]. Here, we use similar 
technique for calculating electron diffusivity in silicon 
chain, as a model system of nanostructured 
semiconductor. 

2. BASIC FORMALISM 
Time evolution of an electronic state can be described 

as 

/l£',.(t)/=exp(-iHt/1l)/ia/, (1) 

where /ia) =l'l',.(t = O)) is the initial state. In this study 
we take atomic-like orbitals as initial states. These i and 
a denote indices of atom and its associated orbital, 
respectively. 

The electron diffusivity is defined as 

(2) 
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Assuming that those atomic-like functions form a 
complete orthogonal set, equation (2) can be rewritten as 

D,.(t) = 
1
![ L L L(ialeih'''lj~P~!UJl~/XIj,P,/ 

fJP! h.P2hP3 I 'I ( I dl \ ] x(j,P, X j,P,/ j,p, e- '1'/ia1 • (3) 

Here, j's and ps also denote indices of atomic position 
and atomic orbital, respectively. 

The time-evolution operator exp( -iH t/11) in Eq.(3) 
is calculated approximately by the Chebyshev expansion 
of the first kind. For scalar argument x, the Chebyshev 
expansion of a function/is defined as follows: 

f(x) = Id,T, (x) 
k=O ' 

(4) 

where 

1 ' 2' d, =-Lf(x), d, =-LT.(x)f(x), (5) 
nJ=l nj=l 

and 
(2j -l)tr 

X1 =COS 
2
n (6) 

The Chebyshev polynomial of degree n denoted by Tn(x) 
is given by the explicit formula, 

:Z: (x) = cos{narccos(x)} . (7) 

For Tn holds a recurrence relation; 

:Z:,(x)=2x:Z:,_1(X)-:Z:,_,(x), n~2 

T,(x)=l. :I;(x)=x. (8) 

The time-evolution operator can be expanded by the 
Chebyshev polynomials as 

U~P~Ie-ih'''lj,P,/ = Id,(t)(j~P~IT,(fi)lj,P,/. (9) 
k=O 

The Chebyshev polynomials of the Hamiltonian operator 
are calculated using the recurrence formula Eq.(8), 
replacing x with the Hamiltonian matrix. Here we use 
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tight-binding model for the Hamiltonian matrix, which 
includes only the effects of the nearest neighbor atoms. 
Thus, the mean displacement of electron is 
approximated by 

L L(iJJ,\X\j,fJ,) = L[ (j,fJ,\X\j, -1,/J,) 
JtfJJJ'Jf12 ilfJJ 

+ (j,/J, \XI j,fJ,) + (j,/J, \XI j, + 1, /J,) 1 . (10) 

We then assume that the integrals have nonzero values 
only when the two orbitals are of the same kind. The 
integrals with orbitals on the same atom are 
approximated as positions of the atom accompanying the 
orbitals. Similarly, the integrals with the 
nearest-neighbor orbitals are approximated as the 
positions of their bond center. 

Once the diffusivity is calculated, DC conductivity of 
the system at T=OK can be obtained from 
Kubo-Greenwood formula 

er (E)=21ie'". "D (t)('P,.(t)\Xo(E,:-h)X\'P;.(t))_(ll) 
DC n 

1&7.- ,. ('P;.(t)\X'\'P,.(t)) 

The calculation of uDc usually requires very large 
system in order to achieve the convergence for t ~ oo . 
In the present study, on the other hand, we only need 
short-time regimes since the system of our interest is of 
nanoscale. Therefore, we only focus on the analyses of 
the diffusivity of electrons. 

3. MODEL FOR ANALYSIS 

[010] (9 : Si or Ge atom 

[101] 
(X) 

a: lattice constant 
Fig.1 Semiconductor chain model 

The model system we adopted is Si chains shown in 
Fig.l, where a is chosen to be the bulk value of lattice 
constant for diamond structure. The principal axis of the 
chain is equivalent to that along the [101] direction in 
diamond structure. We consider four Si chains, the 
composed of N=4, 8, 12, and 16 Si atoms with lengths 
0.5760, 1.3441, 2.1122 and 2.8802nm, respectively. We 
also consider Ge impurity substituted in the Si chain 
N=16. 

For calculating the time-evolution operator, we adopt 
sp3s* model for the tight-binding Hamiltonian of Si and 
Ge given by P.Vogl et al. [6]. 

4.RESULTS 
Figure 2 shows calculated diffusivity for Si chain with 

N=4, 8, 12 and 16. Diffusivity depends on the initial 
position i and the initial orbital a. In Fig.2, we show the 
orbital dependence of the diffusivity for the electron 
initially at i=l. Figure 2(a) indicates that the diffusivities 
are small and there are no significant differences among 
orbitals. In Figs.2(b), (c) and (d), the diffusivity for s 
orbital is larger than other orbitals and increases linearly 
up to around 1.2fs, 1.8fs, and 2.4fs, respectively. Thus, 
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Fig.2 Diffusivity vs. time for different lengths N. (a), 
(b), (c) and (d) are the cases of N=4, 8, 12 and 16, 
respectively. The time scale, in which the diffusivity 
increases linearly, is getting longer with increase of N. 

the time scale, in which the diffusivity increases linearly, 
becomes longer as the length of Si chain increases. 

Figure 3 shows calculated electron diffusivity in Si 
chain (N=16) with aGe impurity. The positions of Ge 
atom are set to be i=4, 7, 10 and 13 in the chain. In 
Fig.3(a), diffusivities are small and there are no 
significant differences among all orbitals. In Fig.3(b ), (c) 
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Fig.3 Diffusivity vs. time for different Ge positions. (a), 
(b), (c) and (d) are the cases of Ge position at 4, 7, 10 
and 13, respectively. The time scale, in which the 
diffusivity increases linearly, is getting longer with 
increase of the distance between the initial position of 
electron and the Ge atom. 

and (d), the diffusivity of s orbital is larger than other 
orbitals and increases linearly up to around 0.6fs, l.lfs 
and 1.6fs, respectively. Thus, the time scale in which 
diffusivity increases linearly becomes longer as the 
distance between the initial position of electron and the 
Ge atom increases, similarly to the results shown in 
Fig.2. 

5. CONCLUSION 
The time scale in which the diffusivity increases 

linearly corresponds to a ballistic regime of electron 
motion and the length of ballistic motion is equal to the 
mean free path of an electron in the system. 
Consequently, our model shows a ballistic behavior of s 
electrons in Si chains. It is also shown that the 
diffusivity depends on the position of Ge atom in Si 
chain. This can be interpreted as the effect of impurity 
scattering in the conventional Boltzmann theory. The 
decrease of diffusivity after the peak may be due to the 
interference with the electron reflected at the end of Si 
chain. 

The remaining issues are the following. First, the 
expectation values of position X in Eq.(10) has to be 
calculated exactly, starting from each orbital type. Here 
we have assumed that the integral with same orbitals is 
finite and the integral with different orbitals is zero: We 
have to confirm the validity of this assumption. Second, 
we should be able to study much larger system using the 
present scheme. We may also need to consider better 
tight-binding parameters for the system studied here. 
Accuracy in describing 1r bonding of conduction state 
and dangling-bond state can be essential for electron 
dynamics in such nanostructures. 
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