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Phase-field Modeling for Faceted Dendrite Growth of Silicon 
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Faceted Dendrite growth was investigated by using a phase-field model for crystal growth with anisotropic 
interfacial energy. Phase-field parameters at the thin interface limit were derived and used in the simulation. The 
accuracy of the model was estimated from the calculated equilibrium interface shape. The errors in the 
anisotropy and Gibbs-Thomson effect were within 1% and 10%, respectively. The growth of a silicon crystal 
from its undercooled melt has been analyzed. The results show that a dendrite grows keeping its tip shape to be 
the same regardless of the growth velocity and that the tip size of a dendrite decreases with increase of the 
growth velocity. 
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1. INTRODUCTION 

Recently many attentions have been paid to the dendrite 
growth of semiconductor materials from their undercooled 
melts, so as to obtain information on their crystal growth 
mechanism. Experiments have been carried out mainly for 
silicon and germanium and it is shown that the periphery 
surfaces of a dendrite are all (111) faces and the crystal 
growth behavior is classified into three categories: lateral 
growth, continuous growth and rapid growth at high 
undercooling [1-4]. The change of the growth mechanism 
has been investigated by the in-situ observation of growing 
interface morphology and the growth velocity at the ranges 
of lateral and continuous growth is shown to be 
approximately proportional to the square of the degree of 
undercooling [3,4]. Though the transition from lateral to 
continuous growth have been discussed using a 
conventional dendrite growth theory [4], the growth 
behavior of a silicon crystal is still not clear. 

Phase-filed modeling is one of the possible tools to 
analyze the growth of a faceted crystal. It is powerful in 
describing the growing interface morphology and a large 
number of examples show its wide applicability to the 
problems [5-8]. In addition it is shown that the thin 
interface limit phase-field model gives a quantitative 
prediction [9-11]. However, the model for the faceted 
crystal growth should be modified so as to include highly 
anisotropic interfacial energy as proposed by Egglestone et 
al. [12]. Namely the interface of a faceted crystal within a 
range of so-called missing orientations becomes unstable 
and the interface energy in the governing equation for 
missing orientations should be changed to that at the edge 
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of the stable orientation. Their model successfully 
reproduced the equilibrium shape and the growth of a 
faceted crystal. 

In the present work the dendrite growth of silicon from 
its undercooled melt is investigated using a phase-field 
model with thin interface limit parameters. The 
morphology of a growing dendrite and its change with 
increase of growth velocity are examined and discussed. 

2. CALCULATION 

2.1. GORVERNING EQUATIONS 

In two-dimensional phase-field modeling, the interface 
energy with four-hold symmetric anisotropy, a(e) , is 
assumed as 

a(O) =a0 (1+vcos48 ), 

where v is the intensity of anisotropy and e is the 
angle between the direction normal to the interface and the 
x-axis. Here the orientation with the largest interface 
energy is taken to be the x-axis. The angle dependent 
curvature of radius, R (e) , is found from the 
Gibbs-Thomson equation. 

(o(e)+d(e))! I( e)= / 1 -l, 
where f 1 and J s are the free energy density of solid 
and liquid phases, respectively. Since the right hand side of 
the equation is positive in an isothermal system with a solid 
particle in a undercooled liquid, a convex non-faceted 
crystal becomes stable when V <1/15. Conversely when 
V > 1/15, the left hand side of the equation becomes 
negative within the missing orientations. Then a faceted 
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crystal comes to be stable, which has the interface with 
stable orientations. The missing orientations correspond to 
the range with the concaved shape in the Wulff's plot. In 
order to get rid of the missing orientations, the anisotropic 
interfacial energy is modified as [12], 

a(8)= a(em) cose (-6m<B<Bm)' 
cos em 

where em is the first missing orientation and it is derived 
by 

~(cos e)= 0 . 
de a(e) 

The anisotropy of the interface kinetics is taken account in 
association with the anisotropy of the interface energy so as 
to have the same orientation dependence as the interface 
energy [10], 

{3(8)=1/ !A._ e)= {30(1-vK cosW) 

where 1-(B) and VK are the linear kinetic coefficient and 
its anisotropy, respectively. 

A phase-field model for crystal growth is based on the 
Ginzburg-Landau free energy functional. The phase field, 
rP, is defined as 0 at liquid and 1 at solid and varies 
continuously from 0 to 1 within the interface region. The 
phase-field equations within stable orientations are given 
by 

{la) 

-~(e'2 +ee"}{2sin28·cpxy -V2cp-cos28·(cpYY -cp.,}} 

- t~ 

and that within missing orientations is given by 

2 

_!_ arp = ( e(em) ) cp - f 
M ot cos8m "" 41 

(lb) 

where M, E and W are phase-field parameters defined 
below, and the subscripts under cp and f denote the 
partial derivatives. Note that it guarantees the orientation 
continuity to take the average of the edge orientations at the 
adjacent points. The angle of the interface normal, the free 
energy density, f , the solid fraction, h ( cp) , and the 
parabolic potential, g ( cp) , are defined by 

tan e = cpy ;cpx 

f =h(ifJ)fs +(1-h(rp))fL +Wg(rp) 

h ( cp) = cp 2 (3 - 2cp) g ( cp) = cp (1 - cp ) . 

The equation for thermal diffusion is given by 

(2) 

where D is the thermal diffusivity, M/ is the latent heat 
per unit volume, and C p is the specific heat per unit 

volume. 
The phase-field parameters E and Ware related to the 

interface energy and the interface width, A , respectively 
and M is related to the linear kinetic coefficient. 

4.J2 a 0 
e = -;r-.JW 

where Tm is the melting temperature. These parameters are 
derived at the thin interface limit. 

2.2. NUMERICAL CALCULATION 

For the numerical calculation Eqs.(la), (lb) and (2) were 
discretized on uniform grids using an explicit finite 
difference scheme. In order to reduce the calculation time, 
the calculation area was divided into several areas with 
different mesh sizes. The time change of the phase-field 
was calculated in the area with the mesh size of t:..x and the 
thermal field was calculated in the areas with the mesh size 
of 3, 9, 27, 81 and 243 t:..x . During the calculation the areas 
were rearranged according to the interface movement so as 
to pursue the interface. The total length of the calculation 
area was at most 30000 t:..x and the numerical calculation 
was carried out at the one-eighth space. The interface width, 
A. , was set to be 7 t:..x . In the calculation all variables were 
rewritten into the dimensionless forms by using the 
following units of the capillary length, d0 =a 0T mC PI Ni, 
the time, d/!D, and the temperature, NI./Cp. The physical 
properties of silicon used in the calculation are shown in 
Table I. Note that the value of the linear kinetic coefficient 
was set to be larger than a usual value for the computational 
efficiency. 

Table I Physical properties of silicon 

Specific heat per volume, Cp J/m3K 2.14 X 106 

Thermal diffusivity, D m2/s 2.80 x w-5 

Melting temperature, Tm K 1685 

Latent heat of fusion, NI. J/mJ 4.15 X 109 

Interface energy, a o J/m2 0.438 

Anisotropy of interface energy, V 0.15 

Kinetic anisotropy, V K 0, 0.07, 0.13 

linear kinetic coefficient, 1-t m/Ks 1.6 

3. RESULTS AND DISCUSSIONS 

Before the dendrite growth simulation the calculation 
accuracy by the model has been examined by comparing 
the calculated crystal shapes with the analytical equilibrium 
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ones. The anisotropy evaluated from the ratio of the 
maximum to minimum radius and the curvature radius at 
the position with the minimum interface energy are 
compared with analytical ones for different values of the 
dimensionless interface width, ;., /d0• The errors in 
anisotropy and Gibbs-Thomson effect are within about 1% 
and 10%, respectively as shown in Table II. 

Table II Errors in anisotropy and Gibbs-Thomson effect. 
( dimensionless undercooling, Li-0.025). 

error J..Jdo 
(%) 2 5 10 20 50 

Liv 0.56 0.39 0.99 1.09 0.65 

M -6.27 -7.94 -7.53 -7.69 -7.64 

Figure 1 shows a typical dendrite calculated under the 
condition of Li=0.5 and A/d0=50. The tip keeps its shape 
during the growth and the interface behind the tip becomes 
unstable to form secondary arms at the sides. 

Fig.1JYpical dendrite shape (Li=0.5, A/d0=50). 

To obtain the steady state growth of a dendrite the 
growth distance of the dendrite should be larger than its 
diffusion length. In addition the steady state growth 
velocity changes with the dimensionless interface width [9]. 
The capillary length of silicon is small so that it is difficult 
to attain the steady state when A/do is small and the steady 
state growth velocity was attained only for ).)d0 =50. 
Therefore the change in growth velocity with A,/d0 is 
estimated by comparing the growth velocity for larger A,/d0 

with that for smaller one at the time when the later 
calculation was terminated (about 300 hours). Table Ill 
shows the relationship between the dimensionless growth 
velocity, V=V I(DI d0), and A,/d0• The growth velocity for 
A/do =50 is about 20% smaller than that for A!d0 =2.5. The 
growth velocity changes also with the kinetic anisotropy as 
shown in Table IV. The kinetic anisotropy does not affect 
the growth velocity much so that the calculation has been 
carried out without the kinetic anisotropy. 

Table III Dimensionless Growth velocities, V, for different 
values of interface width. The growth velocities 
are compared at the same dimensionless time, 

2 t (= t I (do ID)) (Li=0.5). 

Vx10'3 A/do 
?--... t 2.5 5 10 20 50 

734700 1.480 1.481 

2204000 1.307 1.236 

7347000 1.163 1.122 1.018 

In order to examine the dendrite tip shape and size in 
detail the calculation was carried out for A,/d0=50, VK =0 
and Li=O.OS~0.6. In the growth of a faceted dendrite its 
tip does not proceed continuously but conciliatorily. It is 
due to that the growth direction at the edge is given as the 
average values of adjacent points in the model and the 
adjacent interface grows preferably to the edge. During the 
growth the tip shape is kept to be the same and its size 
changes with growth velocity. In order to examine the 
growth velocity dependence on the tip shape and size, the 
dimensionless tip width, Lr, is evaluated as a function of 
the angle of the interface normal, e, as shown in Fig.2. 

Fig.2 Schematic drawing of a faceted dendrite tip and the 
definitions of the tip width, Lr, and the angle of the 
interface normal, e. 

Figure 3 show the change in the normalized tip width 
with the angle of the interface normal calculated for 
different values of undercooling. In the figure the tip width 
is normalized by the value of Lr at 8=nl4. Though the tip 
shape is different from the equilibrium one, it is the same 
regardless of growth velocity. 
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Fig.3 Normalized tip width (=Lr (e)ILr (nl4) vs. angle of 
interface normal (A!d0=50). 

For a non-faceted dendrite it is known that there exists a 
scaling between the tip radius and the growth velocity. 
Figure 3 shows that the similar relationship is expected for 
a faceted dendrite growth when the tip width is taken as a 
characteristic length of the tip. 
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Figure 4 shows the relationship between the 
dimensionless tip width and the dimensionless growth 
velocity, which are plotted in logarithmic scales. As seen in 
the figure the tip width linearly decreases and then 

increases with increase of the growth velocity. The data are 
on a line in the range of the growth velocity less than 10'4 

and the exponent of the growth velocity is -0.38. Since the 
tip width is chosen arbitrarily as a characteristic length of 
the tip we may define it in a modified way. For example, 

when a certain length, L0, is subtracted from Lr, we obtain 
the scaling relationship, (Lr -LoiV =const. , where L0 is 
about 1.3 times of the interface width. Therefore a scaling 
law presumably exists for a faceted dendrite though it needs 
the examination more in detail. 

0 ... 0 

·········e. 

··················· ... Q 

············o 0 
0 0 

1.0x10'5 1.0x1 0-4 

Dimensionless growth velocity, V 

Fig.4 Dimensionless tip width vs. dimensionless growth 
velocity. The broken line is a guide to the eyes and 
demonstrates that the data are on a line. 

4. CONCLUSIONS 

The thin interface limit phase-filed model has been 
successfully applied to the growth of a faceted crystal. The 
equilibrium shape of the crystal has been reproduced with 
good accuracy by the model. The errors of the anisotropy 
and the Gibbs-Thomson effect are within 1% and 10%, 
respectively. The growth of a silicon crystal from its 

undercooled melt has been analyzed using the model. The 
results show that the tip shape of a faceted dendrite is the 
same regardless of the growth velocity and its size is 

presumably scaled to the growth velocity in a similar 

manner to a non-faceted dendrite. 
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