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We propose a new generalized-ensemble algorithm, which we refer to as the multibaric-multithermal Monte 
Carlo method. The multibaric-multithermal Monte Carlo simulations perform random walks widely both 
in volume space and in potential energy space. From only one simulation run, one can calculate isobaric­
isothermal-ensemble averages at any pressure and any temperature. 
Key words: multibaric-multithermal ensemble, Monte Carlo, Lennard-Jones 

1. INTRODUCTION 
Monte Carlo (MC) algorithm is one of the most 

widely used methods of computational physics. In 
order to realize desired statistical ensembles, cor­
responding MC techniques have been proposed 
[1, 2, 3]. The first MC simulation was performed 
in the canonical ensemble in 1953 [1]. The canoni­
cal probability distribution P Nvr(E) for potential 
energy E is given by the product of the density of 
states n(E) and the Boltzmann weight factor e-f3oE: 

PNvr(E) = n(E)e-f3oE , (1) 

where f3o is the inverse of the product of the Boltz­
mann constant kB and temperature To at which 
simulations are performed. Since n(E) is a rapidly 
increasing function and the Boltzmann factor de­
creases exponentially, PNvr(E) is a bell-shaped 
distribution. 

The isobaric-isothermal (ISOBATH) MC simu­
lation [2] is also extensively used. This is because 
most experiments are carried out under the con­
stant pressure and constant temperature conditions. 
Both potential energy E and volume V fluctuate in 
this ensemble. The distribution PNPr(E, V) forE 
and V is given by 

PNPT(E, V)= n(E, V)e-f3oH . (2) 

Here, the density of states n(E, V) is given as a 
function of both E and V, and H is the "enthalpy": 

H=E+PoV, (3) 

where Po is the pressure at which simulations are 
performed. This ensemble has bell-shaped distribu­
tions in both E and V. 

Besides the above physical ensembles, it is now 
almost a default to simulate in artificial, general­
ized ensembles so that the multiple-minima prob-

3783 

lem. (for a recent review, see Ref. [4]). The mul­
ticanonical algorithm [5] is one of the most well 
known such methods. In multicanonical ensemble, a 
non-Boltzmann weight factor Wmc(E) is used. The 
multicanonical weight factor is characterized by a 
flat probability distribution Pmc(E): 

Pmc(E) = n(E)Wmc(E) = const. , (4) 

and thus a free random walk is realized in the po­
tential energy space. This enables the simulation to 
escape from any local-minimum-energy state and to 
sample the configurational space more widely than 
the conventional canonical MC algorithm. Another 
advantage is that one can obtain various canonical 
ensemble averages at any temperature from a sin­
gle simulation run by the reweighting techniques [7]. 
However, it is difficult to compare the simulation 
conditions with experimental environments of con­
stant pressure, since the simulations are performed 
in a fixed volume. 

Recently, we proposed a new MC algorithm in 
which one can obtain various ISOBATH ensem­
bles from only one simulation [6]. In other words, 
we introduced the idea of the multicanonical tech­
nique into the ISO BATH ensemble MC method. We 
call this method the multibaric-multithermal (MU­
BATH) algorithm. This MC simulation performs 
random walks in volume space as well as in poten­
tial energy space. As a result, this method has the 
following advantages: (1) It allows the simulation 
to escape from any local-minimum-energy state (2) 
One can obtain various ISOBATH ensembles not 
only at any temperature, but also at any pressure 
from only one simulation run. (3) One can control 
pressures and temperatures similarly to real exper­
imental conditions. 
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2. THEORY 
In the MUBATH ensemble, every state is 

sampled by a weight factor Wmbt(E, V) 
exp{ -f3oHmbt(E, V)} (Hmbt is referred to as the 
MUBATH enthalpy) so that a uniform distribution 
in both potential energy space and volume space is 
obtained: 

Pmbt(E, V)= n(E, V)Wmbt(E, V) = const. (5) 

We call Wmbt(E, V) the MUBATH weight factor. 
In order to perform the MUBATH MC sim­

ulation, we follow the conventional ISOBATH 
MC techniques [2]. In this method, we perform 
Metropolis sampling on the scaled coordinates Si = 
L - 1ri (ri are the real coordinates) and the volume 
V (here, the particles are placed in a cubic box of a 
side of size L = W). The trial moves of the scaled 
coordinates from Si to s' i and of the volume from 
V to V' are generated by uniform random num­
bers. The enthalpy is accordingly changed from 
H(E(s(Nl, V), V) to H'(E(s'(N), V'), V') by these 
trial moves. The trial moves will be accepted with 
the probability 

acc(o-+ n) = min( 1, 

exp [- f3o{ H' -H -NkBTo In(~)}]) , (6) 

where N is the total number of particles. 
Replacing H by Hmbt, we can perform the 

MUBATH MC simulation. The MUBATH en­
thalpy is changed from Hmbt(E(s(N), V), V) to 
H;..bt(E(s'(N), V'), V') by the trial moves. The trial 
moves will be accepted with the probability 

acc(o-+ n) = min( 1, 

exp [- f3o{ H;..bt-Hmbt-NkBToln (~)} ]). (7) 

The MUBATH probability distribution Pmbt(E, V) 
is obtained by this scheme. 

In order to calculate the ISOBATH ensemble 
average, we employ the reweighting techniques [7]. 
The probability distribution PNPr(E, V;T,P) at 

In P(E*/N, v*IN) 

-2 
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any temperature T and any pressure P in the ISO­
BATH ensemble is given by 

PNPT(E,V;T,P) = 

( V) W -1 (E V) -j3(E+PV) 
Pmbt E, mbt , e . (8) 

f f ( ) -1 ( ) -j3(E+PV) dV dE Pmbt E, V Wmbt E, V e 

The expectation value of a physical quantity A at 
T and P is estimated from 

<A >NPT= 
< A(E, V)W,;-;-~t(E, V)e-.8(E+PV) >mbt 

< wm~t(E, V)e-.8(E+PV) >mbt 
(9) 

where < · · · >mbt is the MUBATH ensemble aver-
age. 

The weight factor Wmbt(E, V) is obtained by 
the usual iteration of short simulations [8]. The 
first simulation is carried out at To and Po in the 
ISOBATH ensemble. Namely, we use 

W~1~t(E, V)= exp{-f3oH~~t(E, V)}, (10) 

where 
H~~t ( E, V) = E + Po V . ( 11) 

The i-th simulation is performed with the weight 
factor W~~t(E, V) and let P~ht(E, V) be the ob­
tained distribution. The (i + 1)-th weight factor 
W~~1l(E, V) is then given by 

(i+1l( ) - { f.l H(i+r)(E V)} Wmbt E, V - exp -~-'o mbt ' ' (12) 

where 

H(i+1l(E V)= 
mbt ' 

(i) ( ) (i) (E V) Hmbt E, V + kBTolnP mbt , . (13) 

For convenience, we make E and V discrete into 
bins and use histogralllS to calculate P~l,t(E, V). 
We iterate this process until a reasonably flat dis­
tribution P~Lt(E, V) is obtained. 

3. MONTE CARLO SIMULATIONS 
We considered a Lennard-Jones 12-6 potential 

system. We used 500 particles (N = 500) in a cubic 
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Fig. 1: (a) The probability distribution PNPT(E*/N, V*/N) in the ISO BATH simulation at (To, PO') 
(2.0,3.0) and (b) the probability distribution Pmbt(E*/N, V*/N) in the MUBATH simulation. 
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Fig. 2: The time series of E* jN from (a) the conventional ISO BATH MC simulations at (T*, P*) = (2.4, 3.0) 
and at (T*,P*) = (1.6,3.0) and (b) the MUBATH MC simulation. 
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Fig. 3: The time series of V* JN from (a) the conventional ISO BATH MC simulations at (T*, P*) = (2.0, 2.2) 
and at (T*, P*) = (2.0, 3.8) and (b) the MUBATH MC simulation. 

unit cell with periodic boundary conditions. The 
length and the energy are scaled in units of the 
Lennard-Jones diameter and the minimum value of 
the potential, respectively. We use an asterisk ( *) 
for the reduced quantities. 

We started the MUBATH weight factor deter­
mination from a regular ISOBATH simulation at 
T; = 2.0 and P; = 3.0. These temperature 
and pressure are respectively higher than the crit­
ical temperature r; and the critical pressure p; 
[9, 10]. Recent reliable data are T; = 1.3207(4) 
and P; = 0.1288(5) [10]. The cutoff radius r~ was 
taken to be L * /2. A cut-off correction was added 
for the pressure and potential energy. In one MC 
sweep we made the trial moves of all particle co­
ordinates and the volume (N + 1 trial moves alto­
gether). In order to obtain a fiat probability distri­
bution Pmbt(E, V), we carried out the MC simula­
tions of 100,000 MC sweeps and made 12 iterations 
of the process of Eqs. (12) and (13). We then per­
formed a long MUBATH MC simulation of 400,000 
MC sweeps with this Wmbt(E, V). 

For the purpose of comparisons of the new 
method with the conventional one, we also per­
formed the conventional ISO BATH MC simulations 

of 100,000 MC sweeps at several sets ofT* and P*. 
The temperature ranged from T* = 1.6 to 2.6 and 
the pressure from P* = 2.2 to 3.8. 

Figure 1(a) is the probability distribution 
PNPr(E* /N, V* /N) from the ISOBATH simula­
tion. It is a bell-shaped distribution. On the 
other hand, Fig. l(b) is the probability distribution 
Pmbt(E* /N, V* /N) from the MUBATH simulation 
finally performed. It shows a fiat distribution, and 
the MUBATH MC simulation indeed sampled the 
configurational space in wider ranges of energy and 
volume than the conventional ISOBATH MC simu­
lation. 

Figure 2 shows the time series of E* /N. Figure 
2(a) gives the results of the conventional ISO BATH 
simulations at (T*, P*) = (1.6, 3.0) and (2.4,3.0), 
while Fig. 2(b) presents those of the MUBATH sim­
ulation. The potential energy fluctuates in narrow 
ranges in the ISOBATH MC simulations. On the 
other hand, the MUBATH MC simulation performs 
a random walk in a wide energy range. 

A similar situation is observed in V* /N. In Fig. 
3(a) we show the time series of V* jN in ISOBATH 
simulations at (T*, P*) = (2.0, 2.2) and (2.0,3.8), 
while in Fig. 3(b) we give those in the MUBATH 
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Fig. 4: (a) Average potential energy per particle < E* IN > N PT and (b) average density < p* > N PT at various 
temperature and pressure values. Open circles: MUBATH MC simulations. Open diamonds: Conventional 
ISOBATH MC simulations. Solid line: Equation of states calculated by Johnson et al. [11). Broken line: 
Equation of states calculated by Sun and Teja [12). 

simulation. The volume fluctuations in the conven­
tional ISO BATH MC simulations are only in narrow 
ranges. On the other hand, the MUBATH MC sim­
ulation performs a random walk that covers even a 
wider volume range. 

We calculated the ensemble averages of poten­
tial energy per particle, < E* IN > N PT, and den­
sity, < p* >NPT, at various temperature and pres­
sure values by the reweighting techniques. They 
are shown in Figs. 4(a) and {b), respectively. The 
agreement between the MUBATH data and the 
ISOBATH data are excellent. Figures 4(a) and {b) 
also show two equations of states of the Lennard­
Jones 12-6 potential fluid. One is determined by 
Johnson et al. [11) and the other by Sun and Teja 
[12). Our MUBATH simulation results agree very 
well with those of these equations. 

4. CONCLUSIONS 
We proposed a new MC algorithm that is 

based on MUBATH ensemble. The advantage of 
this method is that the simulation performs ran­
dom walks in both potential energy space and vol­
ume space and sample the configurational space 
much more widely than the ISO BATH MC method. 
Therefore, one can obtain various ISO BATH ensem­
ble averages at any desired T and P from only one 
simulation run. This is an outstanding advantage 
over the conventional ISOBATH MC algorithm, in 
which simulations have to be carried out separately 
at each T and P. This method also allows one 
to specify a pressure and to compare simulation 
conditions directly with those of real experiments. 
The MUBATH algorithm will thus be of great use 
for investigating a large variety of complex systems 
such as proteins, polymers, supercooled liquids, and 
glasses. It will be particularly useful for the study 
of, for example, pressure induced phase transitions. 
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