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Two-dimensional molecular dynamics simulation of the nano-void 
influence on the elastic modulus of metals 

H. A. Wu and X. X. Wang 
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China, Hefei, Anhui, China 230027 

A two-dimensional triangular atomic lattice model is used to simulate three-dimensional face-center cubic 
(fee) atomic lattice of single crystalline Ag to predict the mechanical properties of materials with nanoscale 
voids. The modified N-body Sutton-Chen potential developed for fee metals was adopted to represent the 
interatomic interactions. Velocity V er let scheme is implemented for time integration algorithm. Simulation 
temperature is kept constant by using Nose-Hoover method. Two-dimensional simulation has great 
advantage of computing cost while maintains main physical mechanisms. It is found from the numerical 
results that the existence of nano-holes results in a decrease in the elastic modulus of single crystalline 
materials. The decrease of the modulus of materials with circle hole is approximately linearly related to the 
squared radius of the hole. With the same total area, a big hole causes more serious reduction of the 
modulus than small holes. It is also found that a flat ellipse hole reduces the modulus more significantly 
than circle holes of the same area. For materials with flat ellipse holes, the modulus is reduced much more 
in the direction of short axis than in the direction of long axis. 
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1. INTRODUCTION 
The approach of molecular dynamics (MD) . 

simulation is one of the most promising methods for 
investigating the mechanical behavior of structures and 
materials at nano-scale [1]. In spite of rapid 
development in the application of quantum-mechanical 
techniques based on first principal [2], the use of 
empirical potentials for modeling materials at atomistic 
level is still necessary. Up to now, a variety of 
interatomic potentials has been used in the MD 
simulations of materials. These potentials include the 
Lennard-Jones (LJ) potential [3), the embedded atom 
potential (EAM) [ 4) and the Finnis-Sinclair (FS) .. 
potential [5). Pair potentials, such as the well-known LJ 
potential, are not very suitable for metals but they have 
the advantage of being simple and less expensive 
computationally compared with the N-body potentials. 
However, this does not imply that all the N-body 
potentials are complicated and computationally 
expensive. For example the N-body FS type potential 
developed by Sutton and Chen [6] is relatively simple 
and not much more expensive in computations than the 
pair potentials. 

The Sutton and Chen (SC) potential consists of a . 
pairwise repulsive part and an N-body attractive part. 
The potential can be written as 
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where r!i is the distance between atoms i and atoms 

j , a is the fee lattice parameter, & is an energy 

parameter, and 

The material parameters for Ag are n = 6 , m= 12, 

e = 2.5415 x 10-3 ev , a= 0.409nm , c = 144.41 . The 
S-C potential combines the van der Waals attractive 
interaction at long range with the many-body cohesive 
interaction at short range and has been shown to predict 
the properties of a range of fee metals quite well [6). 

In continuum mechanics, two-dimensional models, 
such as plane stress, plane strain, and axis-symmetry, are 
employed to model some realistic three-dimensional 
problems, in order to make problems simple. These 
models can grasp the main physical mechanisms with 
less cost. In the present work, we intend to investigate 
the nano-void influence on the elastic property of Ag by 
molecular dynamics simulation. In order to increase the 
model size and reduce the simulation time, a 
two-dimensional (2D) Ag lattice is studied. 
Two-dimensional molecular dynamics [7) can simulate 
the models of bigger length size and longer timescale, 
while not neglecting the main physical mechanisms. It is 
a simplified modeling technique, which does not 
represent realistic atomistic configuration. For fee 
metals, the crystal lattice will be triangle, as shown in 
Fig. 1. 

In our present work, a two-dimensional triangular 
atomic lattice model is used to investigate the nano-void 
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influence on the elastic property of single crystalline. 
The size, shape and distribution of voids are discussed. 
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Fig.l 3D to 2D crystal lattice transformation 

2. MODELING AND METHODOLOGY 
The parameter in equation (2) has to be re-calculated 

for the 2D lattice, and it is 107.7. The cut-off distance 
for the calculation of potentials and forces is chosen to 
be 2.25 d , which is large enough to include the 
third-nearest neighbors. In the present atomistic 
simulation, the temperature is kept constant using 
Nose-Hoover method [8]. The engine of a molecular 
dynamics program is its time integration algorithm, 
which is required to integrate the equation of motion of 
the interacting particles and track their trajectory. In 
molecular dynamics, the most commonly employed time 
integration algorithm is probably the so-called V erlet 
algorithm. Thus, the velocity Verlet scheme [3] is 
implemented in our program as follows: 

r(t +M) == r(t) + v(t)M + a(t)M 2 I 2 

v(t +M 12) = v(t) + a(t).M 12 

a(t+Llt) == -VE(r(t+M))Im 

v(t + ilt) == v(t +M I 2) + a(t + ilt)M I 2 

where the time-step f...t is set as 0.01ps. 

(3) 

We consider a rectangle of plate, with the size of 
100200, i.e. 28.92nm50.09nm. In order to eliminate the 
surface effect, periodic boundary conditions are 
implemented. External tension force is uniformly 
distributed to the atoms of the top and bottom layer in Y 
direction, so the plate is in a unilateral extension state. 

The initial configuration is created in accord with 
ideal geometrical lattice theory. In the beginning of the 
simulation process, the initial configuration is 
equilibrated at 0.01K for 50 ps, which is so called free 
relaxation. The extension loading will be applied in a 
step-by-step way. Since our objective is to study the 
quasi-static behavior of the material, equilibrium must 
be reached in each step before the next loading step is 
applied. From loading applied, we can compute stress, 
and from resulting deformation, we can compute strain. 
The mechanical properties of single crystalline are 
dependent on directions. In our present work, we only 
discuss the elastic modulus in [0 1] direction. The holes, 
as voids, are formed by removing some atoms. 

3. RESULTS AND DISCUSSION 
Using the methodology presented in Section 2, the 

elastic constitutive relation aY = E . & Y can be 

computed. The stress-strain curve in the Y direction of 
plate without holes is illustrated in Fig. 2. 

2.5,---------------, 

I
-•- MD result I /,,/ 

2
·
0 I -·· Linear fit 1 / 

'iF."/ ~ 
o"' 1.0 

0.5 

0.0// 
0.000 0.005 0.010 0.015 0.020 0.025 

', 
Fig.2 elastic stress-strain curve (no holes) 
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Now we insert a circle hole with the radius of 15 d, 
i.e. 4.3nm into the plate. The ratio of void to total area is 
4.1 %. The new stress-strain curve is illustrated in Fig.3. 
It is clearly demonstrated that the existence of nano-hole 
results in a decrease in the elastic modulus of single 
crystalline materials. We find that the stress-strain curve 
of the material even with hole is still linear and elastic 
when the strain is small enough (<0.02), which is in 
accord with our common knowledge in mechanics of 
materials. 

2<,-------------------. 

'·" l-o-MD,esutt I / 
1.4 ············-Unearfitcurve / 

rn" / ~ 0106 b>. 08 

OA 

02/' 
0.0 "'----':-::-----:--'-::----L---,-Lc----,-1 

0.000 0.005 0.010 0.015 0.020 0.025 

', 

Fig.3 elastic stress·strain curve (with hole) 
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Fig.4 plot of elastic modulus as a function 
of square of radius of hole 
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We can further investigate the influence of the radius 
size of hole on modulus. We simulate another 11 similar 
models, with a hole of radius from 5d to 40d, i.e. from 
1.4nm to 11.6nm. Together with two models simulated 
above, the curve of modulus varying with the radius of 
hole is plotted in Figure 4. It can be found that the 
decrease of the modulus of this material with circle hole 
is almost linearly related to the square of radius of the 
hole. 

The distribution of holes can also influence the elastic 
modulus of materials. Below shows four models that 
have the same ratio of void. The radius of hole in model 
(a) is 20d. The radius of holes in model (b) and (c) is 

14.14 d . The two holes arrange in extension direction in 
model (c), while in perpendicular direction in model (b). 
The radius of holes in model (d) is 10. The resulting 
modulus is listed in Table I. 

a b c d 

Fig.5 models of different distribution of holes 

Table I Elastic modulus of model (a, b, c, d) 

~odel a b c d 
Modulus(GPa) 73.00 71.92 78.93 76.84 

Compare model (b) with model (c), the former causes 
more decrease of modulus than the latter, which results 
from that its holes are arranged in the perpendicular 
direction of extension, i.e. its valid area of withdrawing 
extension loading is smaller. Compare model (a) with 
model (b), the same mechanism causes model (b) has 
lower modulus. Compare model (a) with model (d), the 
total area and direction parameter are the same, but 
modulus of (a) is lower than (d), from which we can 
infer a general conclusion that a big hole causes more 
significant reduction in the modulus than small holes 
with same total area. 

e f g h 

Fig.6 models with ellipse holes 

We consider now ellipse holes. As illustrated in 
Figure 6, four models have the same void ratio. The 

radius of the circle hole is 9.54d; the lengths of the long 
and short axes are 20d and 4.5d respectively. The 
resulting modulus is listed in Table II. 

Table II Elastic modulus of model (e, f, g, h) 

~odel e f g h 
Modulus(GPa) 88.02 77.80 90.96 84.63 

We fmd that the influences on the modulus of same 
size ellipse holes with different direction are quite 
different. The modulus of (f) is smaller than (e), while 
the modulus of (g) is lager than (e), which can be 
understand with the valid area theory. We can conclude 
that the existence of ellipse hole reduces the modulus of 
materials mainly in the direction of short axes. For 
model (h), we can expect that its modulus in X and Y 
direction are reduced in the same way. Compare (h) with 
(e), the modulus of former is smaller. From this fact, we 
can deduce another general conclusion that flat ellipse 
holes reduce the modulus more seriously than circle 
holes with same void area. 

4 CONCLUSION 
The S-C N-body potential, which was developed for 

fee metals, has been used to carry out the molecular 
dynamics simulation of 2D lattices of a simple metal A g. 
Our intention is to predict the mechanical properties of 
materials from atomistic scale. Scientists owe the 
reduction of some property parameters of realistic 
materials, compared with prediction from lattice theory, 
to the existence of various kinds of defects. 

In this paper, the influence of nano-hole on the 
elastic modulus is simulated. The existence of holes 
results in the decrease of the elastic modulus of single 
crystalline materials. The decrease in the modulus of 
materials with circle hole is almost linearly related to the 
squared radius of the hole. With same total area, a big 
hole causes more serious reduction of the modulus than 
small holes. Flat ellipse holes reduce the modulus more 
seriously than circle holes. For materials with flat ellipse 
holes, the modulus is reduced much more in the normal 
direction of long axis than in the normal direction of 
short axis. 
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