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The carrier densities and mobilities for electrons and holes of polycrystalline Bi samples from 50 K to 300 
K were analyzed a two-carrier model without applying intrinsic conditions. Expressions of the transport 
coefficients for the analysis were obtained from the Boltzmann equation in the relaxation time and low 
magnetic field approximation assuming a value of the Fermi energies and a form for the scattering 
processes of each of the carriers. Two polycrystalline Bi samples were found to have different temperature 
dependent behaviors of the Seebeck coefficient. The difference of the carrier densities and the mobilities 
of the samples were quantitatively explained through the temperature dependent behaviors. 
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1. INTRODUCTION 
The performance of a thermoelectric material is 

expressed by the figure of merit Z, which is a function of 
the Seebeck coefficient a, resistivity p, and thermal 
conductivity K [ 1). The application of an external magnetic 
field enhances the figure of merit Z ofBi-based material 
more than twofold because the magneto-Seebeck 
coefficient under an optimum magnetic field under 0.5 
Tesla, which is practically achievable in real applications, 
increases by a factor of 1.5 [2]. The magneto-Seebeck 
coefficient has been shown to be dependent on the shape 
of the sample, geometry effect, which is a disadvantage 
for bulk sample [3]. Therefore, Bi microwire array elements 
are fabricated such that enhance the magneto-Seebeck 
coefficient in enhanced by eliminating the geometry effect 
[4]. When a microwire array element is fabricated, the Bi 
is converted into polycrystalline Bi. Hence, the transport 
properties of polycrystalline Bi must be investigated from 
an analysis of carrier densities and the mobilities to 
improve of the performance ofmicrowire array elements. 
In a past analysis of the transport properties of 
polycrystalline Bi using the quantitative mobility spectrum 
analysis (QMSA) procedure, the carrier densities and 
mobilities of electrons and holes were analyzed using 
expressions of the magnetic field dependence of the 
resistivity and the Hall coefficient without assuming 
intrinsic conditions [5]. However the magnetic field 
dependence of the resistivity and the Hall coefficient were 
measured in a strong magnetic field (7 Tesla). However, 
the QMSA procedure has a disadvantage in that the 
geometry effect not eliminated for high mobility samples 
such as Bi (the mobility f.J. of a single-crystal of Bi is 
3.2xl04 cm2Ns [6]) because the influence of the product 
of the mobility and magnetic field become large in the 
magnetic field dependence of the resistivity and Hall 
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coefficient. To analyze the carrier density and the mobility 
accurately, the geometry effect should be eliminated. Hence, 
in this paper, the carrier densities and mobilities of electrons 
and holes of polycrystalline Bi samples were analyzed 
using expressions for the Seebeck coefficient, resistivity, 
magnetoresistance, and Hall coefficient. The resistivity, 
magnetoresistance, and Hall coefficient were measured by 
the Van der Pauw method in order to eliminate the geometry 
effect. 

2. THEORY AND MODEL 
The relaxation time ~is proportional tor, the product of 

the ratio of the carrier energy e to the average vibration of 
an atom (7]. The exponent r varies between -1/2 for acoustic 
deformation potential scattering and +3/2 for ionized 
impurity scattering. We consider a three-dimensional 
isotropic model to estimate the transport coefficients, 
namely the See beck coefficient a [8], resistivity in the 
absence of a magnetic field p

0 
[7], magnetoresistance .dp 

(=p
8
-p

0
, where p

8 
is the resistivity in a magnetic field 

satisfying the low magnetic field approximation) [7], and 
Hall coefficient RH [7]. Each transport coefficient was 
obtained from the Boltzmann equation under a relaxation 
time and low magnetic field approximation, assuming a 
value of the Fermi energies and a form ofthe scattering 
processes of the carriers in a two-carrier model. Under this 
model the expression for the Seebeck coefficient is 
represented by an equation for nondegenerative materials 
and contains the index rand the Fermi Dirac integral F/ 17) 
[8]: 

1 r xi F. (17 )=- dx 
1 j! exp (x- 17 )+ 1 · 

(1) 

where 17 is the reduced Fermi energy. We assumed that 
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the value of r was equal for electrons and holes so that the 
scattering process is the same for both carriers. In addition, 
the Hall factor rH for the Hall coefficient was obtained 
from the definition. 

(2) 

In Ref. 7, the Hall factor rH does not contain the Fermi 
Dirac Integral F/ T]) because it was assumed for the reduced 
Fermi energy that 71 < -4, namely that Maxwell-Boltzmann 
statistics were applicable and the Fermi Dirac integral F( 17) 
could be approximated by exp( 17). However, for Jthe 
semimetal considered in this study, 71 > 0 and eq. (2) 
should be used for rH of in this paper. The details of this 
analysis method are given in Re£ 9. 

3. EXPERIMENTAL SETUP 
Two polycrystalline Bi samples fabricated by a hot­

press method were prepared for the measurement of the 
Seebeck coefficient, resistivity, magnetoresistance, and 
Hall coefficient. Table 1 describes the shape of both 
samples. For the measurement of the Seebeck coefficient, 
both ends of the samples were glued to Cu electrodes 
using low-resistivity Ag paste to stabilize the heat flux 
and to avoid chemical reactions with the Bi. Lead wires 
were attached to the Cu electrodes using conventional 
solder. Two calibrated Cernox temperature sensors were 
used to measure the temperature of the samples and were 
inserted into each Cu electrode. Heaters were attached to 
each Cu electrode to control the temperature using a two­
loop feedback control system. For the measurement of 
the Seebeck coefficient, the thermoelectric voltage was 
measured four times for different temperature differences 
at temperatures from 50 K to 300 K. The Seebeck 
coefficient was estimated using a least squares method 
from the relationship between the temperature difference 
and the thermoelectric voltage to reduce the influence of 
the offset voltage. The resistivity, magnetoresistance, and 
Hall coefficient were measured by the Van der Pauw method 
to eliminate the geometry effect. The applied currents 
were quickly changed from ±I to ±2I, and then to ±31, the 
voltage was measured for each current, and the resistance 
was calculated using a least squares method from the 
relationship between the current and the measured voltage 
to reduce the influence of the offset voltage and the 
thermoelectric voltage. For the measurements by Van der 
Pauw method, the magnetic field was satisfied the low 
magnetic field approximation. 

Table I Shapes of samples A and B. 

Geometry Sample A SampleS 

fur Seebeck Sample length [mm] 4.00 4.02 
coefficient 

Cross section [mm"] measurement 2.00xl.85 2.00><2.01 

for Van der Pauw Thickness [mm] 1.70 2.01 
method Plane area [ mm2] 10.05xl0.10 10.03xl0.01 
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Fig. 1 Temperature dependence of the Seebeck coefficients 
from 50 K to 300 K 

4. EXPERIMENTAL RESULT 
Figure 1 shows the temperature dependence of the 

Seebeck coefficients for two samples. Both Seebeck 
coefficients are about -60 f.l V IK at 300 K and shows n­
type transport properties. The Seebeck coefficient of 
sample A turns over to p-type at around 200 K as the 
temperature was decreases. The temperature dependence 
of the See beck coefficient below 200 K differs from that 
of single-crystal Bi, for which the sign of the See beck 
coefficient is known to be always negative [10]. 
Secondary-ion mass spectroscopy (SIMS) analysis 
indicated that Sn was the main impurity and approximately 
0.01% was contained throughout sample A. On the other 
hand, the Seebeck coefficient of sample B was always 
negative, as that of single crystal Bi [1 0]. For the 
measurements of the resistivity, magnetoresistance, and 
Hall coefficient by the Van der Pauw method, the 
parameter/, which shows the error ofthe measurements 
and is close to 1 when the error is small, was more than 
0.99 at all temperatures, and hence the error in the 
measurements was extremely small, showing that the 
measurements by the Van der Pauw method were made 
effectively. The magnitude of the magnetic field of sample 
A decreases with decreasing temperature and was 0.12 
Tesla at 300 K and 6xl04 Tesla at 50 K. It was smaller 
than that of sample B. Below 50 K, rnagnetoresistance 
could not be measured due to the small magnitude of the 
magnetic field, and therefore 50 K was the minimum 
temperature for our measurements. 

5. ANALYSIS RESULT AND DISCUSSION 
Calculation of the Seebeck coefficient and the Hall factor 

requires the values of the Fermi energy for each carrier. 
Since sample A contains about 0.01% Sn, the Fermi 
energies must be re-evaluated for the analysis. It has been 
reported that the Fermi energies ofSn-doped Bi containing 
about 0.02% Snare 5 me V for electrons and 23 me V for 
holes [11]. This level of contained Sn is of the same order 

· as that of sample A, and so we used these values for the 
Fermi energies of sample A. The Fermi energies of sample 
B were determined by calculations of the carrier densities 
and the mobilities, changing the value of the Fermi energies. 
We found that the temperature dependence of the carrier 
density of holes was similar to that of single crystal Bi 
when we assumed that the Fermi energies of sample B 
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Fig.2 Calculated carrier densities as a function of 
temperature of (a) electrons and (b) holes. The open 

circles represent the averaged carrier densities for 
single-crystal Bi[2]. 

were 18 meV for electrons and 10 meV for holes, and 
hence we used these values [6]. In this analysis, we 
assumed a form of the scattering process, namely the value 
of r, the Seebeck coefficient, resistivity, magnetoresistance, 
and Hall coefficient were calculated assuming a value for r 
in the range -112 < r < + 3/2 [7, 8], though for sample B was 
in the range of -I /2 < r < 0 because the See beck coefficient 
shifts downward in a magnetic field[8, 1 0]. Figures 2 and 3 
show the calculation results of the carrier densities and the 
mobilities for electrons and holes using the experimental 
results of the Seebeck coefficient, resistivity, 
magnetoresistance, and Hall coefficient and assuming a 
value for rand a value of the Fermi energies. Figure 2 
shows the calculated carrier densities for electrons and 
holes as a function of temperature. Since the relaxation 
time does not depend on the temperature, the carrier 
densities n and p have minimum values at r = 0 [7]. The 
temperature dependence of n of sample A agrees with the 
(arithmetic) averaged carrier density for the three axes of 
single-crystal Bi below 200 K [6]. A change in the 
temperature dependence of n due to the Sn in sample A 
could not be identified in Fig. 2{a). On the other hand, n of 
sample B increases with increasing temperature and is larger 
than the averaged carrier density of single-crystal Bi by a 
factor of 4 to 5 at all temperatures. However, a change in 
the temperature dependence of n due to ionization of 
impurities could not be identified in Fig. 2( a). Figure 2(b) 
shows that the temperature dependence of the carrier 
density for holes p of sample A differs from that of the 
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Fig.3 Calculated mobilities as a function of 
temperature of (a) electrons and (b) holes. The open 
circles represent the averaged mobilities for 
single-crystal Bi (2]. 

averaged carrier density [6). The rate of increase of p of 
sample A increases with an increase in the absolute value 
ofr. Below 150 K,p is constant at about 1.0 to 1.5xl018 

cm·3 and is larger than the averaged carrier density of single­
crystal Bi. A comparison of p of sample A and the carrier 
density of single-crystal Bi, suggests the presence of an 
influence due to ionization of the Sn, and the temperature 
dependence ofp is opposite to that ofthe n sample B. In 
past studies, the carrier densities ofTe-doped Bi and Sn­
doped Bi were found to be constant at low temperatures 
due to ionization ofthe impurities [13-15]. We compared 
our analysis results with those of Te-doped Bi because 
the temperature dependence of the carrier density of Sn­
doped Bi has not been reported [14, IS]. For an amount of 
carriers from the Te of l.Sx 1018 cm·l, n was almost constant 
below 100 K because the Te was ionized, adding to then 
ofBi [14]. At 2 K, the carriers from the Te are frozen-out 
and the ionization energy ofSn is smaller than that ofTe 
[I5,16]. Therefore, the Sn may ionize in sample A and act 
as an accepter above SO K. The carrier density p ofthe Sn 
added to thatofsampleAand hence thep of the sample A 
is almost constant below 150 K, even though the carrier 
density of single-crystal Bi increases with increasing 
temperature. The p from Sn may be the dominant 
contribution to the p of sample A below I SO K. Hence, we 
must consider the value of p in detail. For an order of Sn 
doping of approximately 0.01% from the SIMS 
measurement, it was expected that the carrier density of 
donors Nv is about 1018 to 1019 cm·3 and the value of p 
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below 150 K of about 1.0 to l.Sx1018 cm·3 is valid. On the 
other hand, temperature dependence of p of sample B is 
similar to the carrier density of single-crystal Bi due to 
our assumption of Fermi energies [2]. 

Calculated mobilities for electrons and holes as a 
ftmction of temperature are shown in Fig. 3. The mobilities 
J.ln and J.lp have a maximum value at r = 0 and decrease with 
increasing absolute value of r. The relaxation time is 
independent of temperature and the scattering process is 
not influenced by increasing temperature when r = 0 [7]. 
Figure 3(a) shows that the values ofthe mobility J.ln of 
sample A are different from the (arithmetic) averaged 
mobility of single-crystal Bi by a factor of 1/3 to 1110 due 
to boundary scattering in polycrystalline Bi below 150 
K[6]. The trend of the temperature dependence of J.ln 
does not change even as r is varied in the range -1/2 < r < 
+3/2.The value !dp.fdT1 decreases with increasing 
temperature above ISO K, and the J.ln are different from 
the averaged mobility of single-crystal Bi by a factor of 
2/3 to 1/3. The J.ln of sample B is also smaller than the 
averaged mobility of single-crystal Bi by a factor of 1/4 to 
115 and smaller than that of sample A above 200 K. The 
value !dp.fdTJ of sample B is constant at all temperatures. 
For sample B, the temperature dependence of the electric 
conductivity for electron o;, is similar to that of single­
crystal Bi due to the temperature dependence of J.ln' which 
is smaller than that of single-crystal Bi by a factor of 114 
to 115 even though n of sample B is larger than that of 
single-crystal Bi by a factor of 4 to 5. Figure 3(b) shows 
that the difference between the mobility J.l of sample A 
and the mobility of single-crystal Bi is sm~ller than that 
for J.ln' even though the carriers from Sn act as p-type 
carriers and there may be influences due to boundary 
scattering for polycrystalline Bi. The temperature 
dependence of the mobilities and the carrier densities of 
sample A indicates that the electric conductivity er for 
holes is larger than ern for electrons, especially at low 
temperature. On the other hand, J.lp of sample B is similar 
to the averaged mobility of single-crystal Bi under the 
Fermi energies assumption, and er of sample B is similar 
to that of single-crystal Bi dri'e to the temperature 
dependence of J.lp as well as ern [6]. It is shown that the 
electric conductivities of sample B were similar to that of 
single-crystal Bi even if the increases inn due to impurities 
was larger than p of sample A. From this analysis, the 
temperature dependences of the carrier densities due to 
impurities and the mobilities due to boundary scattering 
were found to be the source of the temperature dependence 
of the electric conductivities. 

6.CONCLUSION 
The carrier densities and mobilities of polycrystalline 

Bi samples were successfully analyzed using expressions 
for the transport coefficients obtained from the Boltzmann 
equation in the relaxation time and low magnetic field 
approximation assuming a value of the Fermi energies and 
a form for the scattering processes of each carrier. It was 
shown that the temperature dependent behavior of the 
carrier densities and mobilities consistent with the past 
analysis result for single-crystal Bi. The temperature 

dependent behaviors of the electric conductivities were 
quantitatively explained using the temperature 
dependent behavior of the carrier densities and 
mobilities, which were influenced by impurities and 
boundary scatering, respectively. 
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