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We give systematic ab-initio calculations for the solution energies of single impurities (Na-Si, Cu, Zn, 
Zr-Ag) in Al. The calculations are based on the generalized-gradient approximation in the 
density-functional theory and employ the all-electron full-potential Korringa-Kohn-Rostoker Green's 
function method for point defects. In order to study the lattice distortion effect, we performed the 
calculations with and without the lattice distortion. The chemical interaction energies, being the parts 
without the distortion effect, agree very well with the available experimental data for the solution energies 
of Mg and Si, because the distortion effect is very small for these impurities. It is shown that the lattice 
distortion effect of single impurities can be easily understood in terms of the size of impurities compared 
with the host atom. As an example of defect pairs, we also study the distortion effect for the formation of a 
lst-nearest-neighboring divacancy in Al: the distortion effect is repulsive as well as the chemical 
interaction [Phys. Rev. B70, 094118(2004)], although it is very weak due to the cancellation of both the 
distortion effects around the mono vacancy and divacancy. 
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1. INTRODUCTION 
The study of the initial stage of the 

temperature-dependent dynamical process of the 
formation of Guinier-Preston (GP) zones of 
low-concentrated Al-based alloys such as Al1 .. ,:Xc (X=Cu, 
Zn; c < 0.05) is strongly requested for the design of new 
materials of light and high strength.1 At present the 
Monte-Carlo simulations are possible for such problems. 
However, almost all of them use the simple 
pair-interaction model with the parameters fitted to the 
experimental data of the phase diagrams.2 Since the 
calculated results depend on the accuracy of the 
interaction-parameter model, the construction of the 
interaction-parameter model is essential. Recently it has 
been shown that the first-principles calculations, based 
on the generalized-gradient approximation (GGA) in 
density-functional theory, reproduce almost completely 
the experimental data for defect properties as well as the 
bulk properties of materials and elucidate the 
micromechansim of defect properties.3

-
7 Thus, it may 

be expected that the first-principles calculations replace 
experiments as a major source of information for many 
properties of materials. It is noted that the 
first-principles calculations can provide the input data 
including the total energies of metastable and 
hypothetical structures, being not measured 
experimentally, which are important to construct the 
accurate interaction-parameter model. Among the 
different band-calculation methods, the all-electron 
full-potential Korringa-Kohn-Rostoker (FPKKR) 
Green's function method used in the present work is 
most useful.6

•
8

•
9 The advantage of the Green's function 
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method is that due to the introduction of the host 
Green's function, the embedding of point defects in an 
otherwise ideal crystal is described correctly, differently 
from the usual supercell and cluster calculations. Now it 
is possible to calculate the energetics of point defects in 
complex periodic systems because the host Green's 
function of complex periodic systems with a large 
number of atoms per unit cell can be calculated by the 
screened FPKKR (SFPKKR) method. 10

•
11 We plan to 

construct the accurate interaction-parameter model for 
the above-mentioned alloys, using the GGA-FPKKR 
calculations. Practically we calculate the binding 
energies (BEs) of vacancies and impurities in Al, 
corresponding to the internal energies of 
low-concentrated alloys. In the present work, we divide 
the BE into the chemical interaction energy (CIE) and 
the lattice distortion energy (LDE): the CIE is defined as 
a total-energy change due to the atomic rearrangement 
on the ideal lattice. For the CIE we use the cluster 
expansion. In a separate paper, 12 we show that the CIE 
of agglomerates of vacancies and impurities (Cu, Zn, 
Mg) are reproduced very well by use of the many-body 
interaction energies up to the four-body terms.4 For the 
LDE we plan to construct the size- and shape-dependent 
model for agglomerates of defects: we must perform 
systematic ab-initio calculations for the LDEs for 
different atomic arrangement of vacancies and 
impurities. For example, in order to construct the 
interaction-parameter model for the computer 
simulations, which are required for the dynamical 
process of GP zones of AlCu, we need, at least, the 
calculations for single, pair, and square of Cu impurities 
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in (001) plane in Al. Although the study for the lattice 
distortion effect around point defects is very difficult 
because of the requirements of accurate calculations for 
total energies or forces, it is now possible by the 
calculations based on the GGA-FPKKR methodY· 14

•
15 

The difficulty arises mainly from the fact that the LDE 
is generally very small (an order of O.OleV), being 
compared with the cohesive energy (-5eV) of solids. 

In the present paper, as a first application for the 
systematic study of the lattice distortion, we show the 
calculated results for the lattice distortion effect of 
solution energies of single impurities (Na-Si, Cu, Zn, 
Zr-Ag) in Al. We also discuss the lattice distortion effect 
for the formation of a lst-nearest-neighboring divacancy 
in AI, as an example of defect pairs in Al. 

2. CALCULATIONAL METHOD 
The calculations for solution energies of single 

impurities in metals are based on the 
generalized-gradient approximation in 
density-functional theory. In order to solve the 
Kohn-Sham equations we use multiple scattering theory 
in the form of the KKR-Green's function method for full 
potential.5

•
8
•
9 In the present calculations for the CIEs, 

being the total-energy changes due to the atomic 
rearrangement on the ideal lattice, the potentials of 
impurities and their lst-nearest-neighboring host atoms 
are recalculated self-consistently, while the band-energy 
changes due to the perturbed wavefunctions over the 
infinite space are correctly evaluated by using the 
Lloyd's formula:9 the potential perturbation due to 
point defects in metals is very short-ranged because of 
the strong screening effect of host electrons. On the 
other hand, the study for the lattice distortion effect 
demands the self-consistent calculations for the 
potentials in the larger region because the potentials at 
the host atoms connected to the relaxed host atoms 
around the single impurities are also perturbed: the 
perturbation region depends on the largeness of the 
distortion. For example, we recalculate the potentials up 
to the 5th-nearest-neighboring sites of point defects, as 
discussed in section 4. 

Here we discuss how to calculate the solution 
energies of impurities in Al. The formation energy of a 
binary alloy A1.J30, where c is the atomic concentration 
ofB atoms, is defined by 

E(c) =EA 8 -(1- c)EA- cE 8 ~c c . 
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Fig. I The solution energy of one B impurity in an A metal is 
defined as a total-energy difference between two states: (a) 

the initial state without a impurity and (b) the fmal state with 
a single impurity. 

Here EA1_c8 is the total energy of the alloys, and 
EA and l: 8 are the energies of the pure metals. 
Thus the solution energy f.:~~ A ) of one B 
impurity in an A metal is given by derivative dE/de 
in the dilute limit c ....... 0: 

E ~~~ A = ~ E I + E bulk _ E bulk (2) 
de A1-cBc e=O A B 

:C EA1-cBcl e=O = .1EAn-1B = EAn-18 - EAn (3) 

where .1EAn_18 is the energy difference between an 
A metal with a substitutional B impurity and the 
pure B metal: n is a number of atoms in the region of 
the perturbed potentials and is set to be 13 (one center 
and lst-nearest-neighboring host atoms in fee) in the 
present calculations. 5 In view of a chemical bond picture, 
the E ~~~ A is expressed by 

E sol 12E bond SE bond SE bond 
8inA= A-BinA- A-AinA- 8-BinB (4) 

h bond O) d bond were6EA-AinA(< an 6EB-BinB(<0) 
are the cohesive energies of pure A and B metals with 
the opposite sign, respectively. For the solution of one B 
impurity in an A metal, 12 A-B bonds are created, while 
6 A-A and 6 B-B bonds of pure metals are broken. This 
is easily understood because E ~~~A is a total-enegy 
difference between the two states, as shown in Fig. I: (a) 
the initial state without an impurity and (b) the final state 
with a single impurity. 

3. CALCULATED RESULTS FOR COHESIVE 
ENERGIES (Na-Si,Cu, Zn, Zr-Ag) 

Figure 2 shows the calculated results for the atomic 
structures, cohesive energies, and Wigner-seitz radii for 
pure crystals (Na-Si, Cu, Zn, Zr-Ag) , which were 
obtained by use of the GGA-SFPKKR calculations.10

• 
11 

It includes the experimental data. It is noted that the 
present calculations reproduce very well the 
experimental data for the atomic structures of ground 
~tes, Wigner-Seitz radii, cohesive energies for all 
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Fig.2 Atomic structure and Wigner-Seitz radius (a), cohesive 
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energy (b) of pure metals, obtained by the GGA-SFPKKR 
calculations, together with the experimental data See text for 
details. 

considered here, as shown in Fig.2, although the small 
discrepancies occur for the cohesive energies of 
transition metals (Mo and Tc). For Si, we show the 
Wigner-Seitz radii in diamond (ground state) and fee 
structures because the nature of cohesion in fee (metallic 
bonding) is very different from that in diamond 
(covalent bonding): the Wigner-Seitz radius for fee is 
smaller than that of Al. We will discuss that the lattice 
relaxations of the host atoms around single impurities, 
being relaxed inward or outward, are understood by 
comparing the Wigner -Seitz radii of the host atom and 
impurities, in the metallic bonding. 

4. CALCULATED RESULTS FOR SOLUTION 
ENERGIES OF SINGLE IMPURITIES (Na-Si, Cu, 
Zn. Zr-Ag) IN AI 

In subsection 4.1 we show the CIEs for the solution of 
single impurities in AI, while in subsection 4.2 theLDEs. 

4.1 Chemical interaction energies (CIEs) 
Figure 3 shows the CIEs (and LDEs discussed in the 

next subsection) for the solution of single impurities in 
Al. It includes the experimental data for Mg and Si.17

•
18 

The calculated results are summarized as follows. 
( 1) The available experimental data agree very well 

with the CIEs. 
(2) The chemical interaction for Na and Si is strong 

repulsive. 
(3) The chemical interaction for Cu is very weak. 
(4) The chemical interactions for Zr-Pd are attractive 

and strongest around Rh. 

We expalin briefly the calculated results. The strong 
repulsion (positive value) for Na may be due to the 
much weaker Na-Al bond, compared with AI-AI bond. 
On the other hand, the srong repulsion for Si may be due 
to the break-up of the strong Si-Si bonds. For Cu, the 
weak repulsion means that the bond strength doesn't 
change very much for AI-AI, Cu-Cu, and Al-Cu: the 
bond strength of AI-AI and Cu-Cu is almost same, as 
shown in Fig.2. On the other hand, the attraction 
(negaitive value) for Zr-Pd is due to the creation of the 
strong AI-X (X=Zr-Pd) bonds, compared with AI-AI and 
X-X bonds. This is consistent with the calculated results 
for the impurity-impurity interactions of X-X in AI, as 
discussed in Ref. 7. 

0 chemical interaction energy 

(FPKKR-GGA without distortion effect) 

Na Mg AI Si Cu Zn Zr Nb Mo Tc Ru Bh Pd Ag 

Impurity X 

Fig.3 Solution energies of impurities in Al. The calculated 

results for the chemical interaction energies and distortion 
energies are shown, together with the experimental data for 
MgandSi. 

4.2 Lattice distortion energies (LDEs) 
If a defect (impurity or vacancy) is inserted in a metal, 

the forces are induced on the host atoms around the 
defect. Figure 4 shows the calculated Hellmann 
-Feynman (HF) forces on the host atoms at ideal atomic 
positions in the vicinity of a defect X (X=vacancy, Cu). 
The negative means the inward relaxation around a 
defect. We show the calculated results obtained by use 
of the impurity clusters including up to the 5th (78 host 
atoms+X) and 14th (296 host atoms+X) neighbors, 
where the potentials are redetermined self-consistently. 
The equilibrium atom positions may be determined by 
the condition of vanishing forces, although the 
full-optimization of atomic positions for the 
distant-neighboring host atoms is very time-consuming. 
Figure 4 shows: (1) the HF forces are long-ranged and 
show the Friedel-type oscillation, although the forces on 
the lst-neighbors are dominant; (2) the forces up to 
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Fig.4 HF forces for a vacancy and a Cu in AI, obtained by 
use of the impurity clusters of (78 host atoms+ X ) and (295 
host atoms + X). See text for details. a is a lattice parameter. 
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host atoms of single impurities, the resultant displacements 
of the lst-nearest-neighboring host atoms, and are distortion 
energies. See text for details. 

5th-neighbors are reproduced very well by the smaller 
cluster (78 host atoms+ X), where all the host atoms 
connected to the lst-neighbors or 2nd-neighbors of a 
defect are included. Thus we believe that the main part 
of the distortion effect may be treated by using the 
smaller cluster (78 host atoms + X) and by considering 
only the lattice relaxation effect of the I st -neighbors of a 
defect. In order to study the LDEs in the solution of 
impurities, we use both the approximations. Figure 5 
shows the the calculated results for the HF forecs at 
ideal positions, displacements of the I st-nearest 
-neighboring host atoms around impurities X (X=Na-Si, 
Cu, Zn, Zr-Ag), and the distortion energies. The 
characteristic features are summarized as follows: 
(1) The LDEs are very small compared with the CIEs, 

as seen in Fig.3. 
(2) The LDEs increase with the magnitude of the 

displacements. 
(3) The displacements increase with the HF forces at 

the ideal positions. 
(4) The signs and magnitudes of the forces at the ideal 

positions are correlated to the differences between 
the Wigner-Seitz radii of the host atom and 
impurities, shown in Fig.2. 

These results mean that the behavior of the distortion 
effect is very simple because it can be explained by 
use of the differences between the Wigner-Seitz radii of 
the host atom and impurities. 

5. LATTICE DISTORTION ENERGY(LDE) FOR 
THE FORMATION OF A 1ST-NEAREST 
-NEIGHBORING-DIV ACANCY IN AI 

We already showed that the chemical interaction for 
the formation of a lst-nearest-neighboring divacancy in 
AI is repulsion (-0.06eV),4 differently from the 
commonly accepted interpretation "attraction due to the 
decrease of dangling bonds". 

Here we show the calculated result for the lattice 
distortion effect for the formation of a divacancy in Al. 
In order to study the lattice distortion effect, we used the 
the impurity cluster (100 host atoms + 2 vacancies) of 
C2v symmetry point group. This cluster includes the host 
atoms up to 5th-neighbors of vacancies. We tried the 
full-optimization for the atomic positions in the impurity 
cluster, although it is very time-consuming. The LDE of 
a monovacancy is as large as -0.052 eV. For a divancy, 
the LDE is almost the sum total (-0.100 eV) of the 
distortion energies of two monovacancies. As a result, 
the lattice distortion effect for the formation of a 
divacancy is almost zero (0.004 eV), due to the 
cancellation of both the distortion effects of the 
monovacancy and divacancy. However, it is noted that 
the distortion effect is as repulsive as the chemical 
interaction. 

6. SUMMARY 
We showed that the experimental data for solution 

energies of impurities in AI are reproduced very well by 
the present GGA-FPKKR calculations. The solution 
energies are divided into the CIEs and LDEs. It was 
found that the LDEs are very weak compared with the 

CIEs. As an example for defect pairs, we also calculated 
the LDE for the formation of a lst-nearest-neighboring 
divacancy in AI: the distortion effect is repulsive, 
although it is very weak due to the cancellation of both 
the lattice distortion effects of the monovacancy and 
divacancy. 

It was also shown that the behavior of the LDEs for 
single impurities is very simple: it is understood in terms 
of the size of impurities compared with the host atom. If 
the behavior of the LDEs of agglomerates of impurities 
and vacancies is similar to that obtained for single 
impurities, we can construct the distortion-energy model 
in the simple functional form. The calculations for the 
LDEs of2-13 impurities in AI are in progress. 

References 
[I] T. Sato, S. Hirosawa, K. Hirose, and T. Maeguchi, 

Metall. Mater.Trans.A34, 2745(2003). 
[2] S. Hirosawa, T. Sato, and A. Karnio, Mater.Sci. Eng. 

A242, 195-201(1998). 
[3] K. Carling, G. Wahnstorm, T. R. Mattsson, A. E. 

Mattson, N. Sandberg, and G. Grimvall, Phys. Rev. 
Lett.85, 8362-8365(2000). 

[4] T. Hoshino, M. Asato, R. Zeller, and P. H. Dederichs, 
Phys. Rev. B70, 094118(2004). 

[5] T. Hoshino, T. Mizuno, M. Asato, and H. Fukushima, 
Mater. Trans. 42, 2206-2215(2001). 

[6] M. Asato, T. Mizuno, T. Hoshino, and H. Sawada, 
Mater. Trans. 42, 2216-2224(2001). 

[7] T. Hoshino and F. Nakarnura, to be published in a 
special issue of Metastable & Nanocrystalline 
Materials. 

[8] P.H. Dederichs, T. Hoshino, B. Drittler, K. Abraharn, 
and R. Zeller, Physica B172, 203-209(1991). 

[9] B. Drittler, M. Weinert, R. Zeller, and P. H. 
Dederichs, Phys. Rev. B39, 930-939(1989). 

[10] R. Zeller, Phys. Rev. B55, 9400(1997). 
[11] T. Hoshino, M. Asato, T. Nakarnura, R. Zeller, and 

P. H. Dederichs, J. Magn. Magn. Matter.272-276, 
e231-e232(2004 ). 

[12] F. Nakarnura et al, in this conference. 
[13] N. Papanikolaou, R.Zeller, and P. H. Dederichs, 

Phys. Rev. B55, 4157-4167(1997). 
[14] T. Hoshino, N. Papanikolaou, R. Zeller, P. H. 

Dederichs, M. Asato, T. Asada, and N. Stefanou, 
Comput. Mater. Sci. 14, 56(1999). There are two 
errors in figures: (1) The scale for Force in Fig.5(b) is 
multiplied by fi ; (2) the sign for GGA-Force (211) 
in Fig.6 is negative. 

[15] A. Settels, T. Korhonen, N. Papanikolaou, R. Zeller, 
and P. H. Dederichs, Phys. Rev. Lett. 83, 4369-4372 
(1999). 

[16] in preparation 
[17] J. E. Hatch, Aluminium: Properties and Physical 

Metallurgy (American Society for Metals, Metals 
Park, OH, 1984). 

[18] D. Luedecke and K. Hulse, Z. Metallkd. 77, 
145(1986). 

(Received December 23, 2004; Accepted April 28, 2005) 


