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Thermodynamic framework of Crystal-Glass transition is described based on the free energy of the Cluster 
Variation Method (CVM). Constrained free energy ofL10 ordered phase is calculated as a function of a Long 
Range Order parameter which is regarded as an order parameter of the Crystal-Glass transition. It is 
demonstrated that the T0 temperature terminates at a tricritical point at which the entropy of the liquid phase 
becomes identical with the one of a defective crystal. This is the indication of the ideal glass transition. It is 
shown that the glass transition temperature corresponds to the spinodal ordering temperature of the order­
disorder transition. 
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1. INTRODUCTION 
Recent development of first-principles calculations of 

phase stability and phase equilibria is quite remarkable. 
For certain systems, the transition temperatures have 
been predicted with surprisingly high accuracy and 
various effects on the phase stability can be separated 
out to reveal an essential mechanism of stabilization or 
de-stabilization.[l] In the first-principles calculation, the 
free energy is described based on the accurate atomistic 
information such as pair and many-body interaction 
energies, cluster correlations, symmetry of the discrete 
lattice etc. Such an accuracy claimed in the high 
precision calculation, however, is sometime a stumbling 
block against the applicability in the wide class of 
materials and matters. 

Phenomenological description of the free energy, on 
the other hand, generally discards the details of atomistic 
information, therefore one can not expect to derive 
physical quantities in high accuracy. However, a big 
advantage over the first-principles scheme is the 
versatility to cover wide range of phenomena including 
systems with a low sYmmetric structure. In fact, 
numerous kinds of phase transition phenomena 
including Liquid-Crystal transition and Crystal-Glass 
(CG) transition, which are the main concern of the 
present study, have been described and analyzed based 
on phenomenological free energies. The essential 
process of the phenomenological description is that a 
key quantity(s) to control the phenomenon of interest is 
identified and is efficiently parameterized as an order 
parameter. In most cases, a phenomenological free 
energy is given in the series expansion of an order 
parameter(s) and coefficient terms reflect essential 
physics behind the phenomena such as the symmetry of 
the system. For the description of the first-order 
transition, a common practice is to describe the free 
enerp in the series expansion of order parameter(s) up 
to 6 order, while for the second order transition, the 
expansion terminates at the 4th order. Mathematically, 
such a series expansion is quite transparent and proves 
useful for the analysis of Liquid-Crystal and Crystal­
Glass (CG) transitions. 
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In the present study, however, a different approach is 
attempted. We employ atomistic free energy based on 
the Cluster Variation Method (CVM) [2J and adopt a 
Long Range Order parameter as an order parameter to 
describe the CG transition in a phenomenological 
manner. Among various attractive features of the CVM 
in studying order-disorder (OD) transitions, the 
capability of analyzing the intrinsic stability of the 
sYStem is addressed. In particular, spinodal ordering [3] 
which takes place upon the spontaneous loss of stability 
with respect to an infinitesimal configurational 
fluctuation has been extensively investigated both in real 
space and k-space formulations.[4] The locus of the 
spinodal ordering temperature is obtained from the 
vanishing condition of the 2"d order derivative of the 
free energy functional, and the diffuse intensity 
spectrum calculated by the Fourier transformed free 
energy is directly comparable with a scattering 
experiment. 

The onset of the spinodal ordering is closely related to 
the order of the transition. When the spinodal ordering 
temperature coincides with a transition temperature, the 
transition is of the second order, while the first order 
character is emphasized by the deviation of these two 
temperatures. For the first order transition, the existence 
of the metastable state(s) is essential and is indicated by 
the local minimum of the free energy. By lowering 
temperature, however, the free energy surface at the 
local minimum state flattens and fmally metastable state 
vanishes at a certain temperature. This characteristic 
temperature is nothing but the spinodal ordering 
temperature which has been amply discussed [5,6] for 
disorder-Ll0 transition, a typical example of the first­
order transition. 

In view of the fact that a CG transition is associated 
with the liquid-solid transition which is another typical 
first order transition, the author is motivated to examine 
the applicability of the CVM free energy for the L10-

disorder transition to describe CG transition. [7] It is 
fully understood that the CVM has been employed for 
the OD transition on a highly symmetric Bravais lattice, 
while CG transition yields a topologically disordered 
structure which can not be dealt by a conventional CVM. 
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Then, one can not expect any structural information 
pertinent to the CG transition out of the present 
calculations. However, recent development of 
Continuous Displacement Cluster Variation Method 
(CDCVM) [8,9] allows the local breaking of a crystal 
symmetry and, therefore, is expected to be directly 
applicable to the CG transition. The present study is 
attempted to establish a thermodynamic framework for 
the CG transition within the conventional CVM prior to 
the application of sophisticated CDCVM, and a 
particular focus is placed on the clarification of glass 
transition in the mold of OD transition. 

2. CVM FREE ENERGY 
Within the tetrahedron approximation [10] of the CVM 

which is the main concern of the present study, the free 
energy of the Ll0 ordered phase is given as, 

FLIO =~·N. 2>ij .(y;a +4y:p + y:P) 
i,j 

where the first and second terms are internal energy and 
entropy, respectively, k8 is the Boltzmann constant, T 
the temperature, e!i the atomic interaction energy 
between species i and j, x;, Y!i and w!ikl are cluster 
probabilities of finding atomic arrangement specified by 
the subscript(s) on the point, pair and tetrahedron 
clusters, respectively, and N is the number of the lattice 
point. The superscript( s) distinguishes the sub-lattice. 

The cluster probabilities are mutually related through 
normalization conditions and geometrical conditions 
given by 

(2) 

and 

X;= LYv = Lwvkz 
j j,k,l 

(3) 

respectively. Note that in order to avoid complicacy, the 
distinction of the sub-lattice by superscript is omitted in 
the eqs.(2) and (3). Then, for the sake of mathematical 
transparency, it is more convenient to introduce 
correlation functions [11,12], {;J , which form a set of 

independent variables and are defined as the ensemble 
average of spin variable a P which takes either + 1 or 

-1 depending upon A or B atom, respectively, on the 
lattice point p. The subscript I represents a number of 
lattice points in the cluster. It has been demonstrated 
[11,12] that a cluster probability and a set of correlation 
functions are related through a linear transformation. 
Then, the free energy given in eq.(l) can be 
symbolically rewritten as 

F• LIO(T f }, ;:a ;:P ;:aa ;:af3 ;:PP pxafJ ;:af3f3 ;:aapf3) = 'leij ''='l ''='1 ''='z ''='2 ,~:>z ''='3 ''='3 ''='4 
(4) 

In the present study, the discussion is confmed to a fixed 
concentration of 1:1 stoichiometry. Then, from the 
symmetry of the L10 ordered phase, one of the point 
correlation functions can be replaced by the negative of 
the other point correlation function. The same is held for 
the three body correlation functions. Also, it can be 
shown that the pair correlation function of the like-sub­
lattices, a a ,is equivalent to the one for the other like­
sub-lattices , {JfJ. The number of correlation functions is, 

therefore, reduced to five to give the free energy as 

Here, the point correlation function ~t is the Long 

Range Order parameter (LRO) while the others are Short 
Range Order parameters. 

When the free energy is minimized with respect to all 
the correlation functions, one obtains the equilibrium 
state, which is the general practice for phase diagram 
calculations. In the present study, however, we minimize 
the free energy under a specified LRO, which is termed 
a constrained minimization. This procedure provides us 
with the free energy as a function of LRO and 
temperature, F(T,TJ), in which LRO ;r is replaced by 

an order parameter TJ for the description of a CG 

transition. It should be noted that the introduction of the 
new order parameter to describe the CG transition is not 
at all trivial. The original LRO ;t is defined on the 

discrete lattice, whereas the order parameter 1] within 

the CG transition discards such a meaning and is defmed 
on the phenomenological basis. 

3. CRYSTAL GLASS 1RANSITION 
For TJ, 0 and I are assigned to indicate a perfect 

crystal and liquid, respectively. It has been demonstrated 
[7] that at the transition temperature T,, the free energy 
F(T,,TJ) has the two identical minima to which a 

common tangent line can be drawn, and that there exists 
an energy hump between the minima, which are the 
indication of the first order transition. In the context of 
CG transition, T, is regarded as the melting temperature. 
Below the melting temperature, one of the two minima 
becomes grand minimum near TJ =0 and the other 

becomes local minimum indicating the metastable super­
cooled liquid phase. However, below a certain 
temperature TL the free energy hump diminishes and the 
crystal state is identified as a unique stable state by the 
absolute minimum. This is a critical temperature at 
which super-cooled liquid is no more sustainable and the 
infinitesimal fluctuation of order parameter induces the 
spontaneous loss of the stability, which may lead to a 
glass or crystal transition depending upon a system. 

From the discussion above, TJ can be regarded as an 

amount of generalized defect s introduced in the system 
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Figure 1. T0 diagram indicating a tricritical point 
which is the ideal glass-transition temperature. The 
vertical axis corresponds to a normalized 
temperature.[7] 

which break the symmetry of the crystal to induce the 
liquid transition. According to Okamoto et al. [13], these 
defects can be impurities, dislocations, atomic 
displacement within the Lindemann's sense. The 
specification of the particular defect, however, is not 
essential in the framework of the present attempt of the 
thermodynamic description. 

For a specified value of order parameter 1J, F(T, 1J) 
provides the temperature dependency of the free energy 
of a defective crystal and is now rewritten as g,lT). 

Then, the intersection of g~(T)with gq=
1
(T), which is 

the temperature dependence of the liquid free energy, 
yields the melting point of a defective crystal. By 
repeating this procedure for various values of 1J , one 

obtains the diagram shown in Fig.1 [7] which indicates 
the melting temperatures of defective crystals. One sees 
that the melting temperature decreases with the increase 
of defects. It should be noted that the equality of the free 
energies suggested in the figure does not guarantee the 
equilibrium transition. In this sense, this is not a phase 
diagram and is termed T0 diagram. 

What is important in Fig.l is that T0 terminates at a 
tricritical point which is found at 1Jc =0.976 and 

~ =0.861. It was shown [7] that, at this critical value of 

1Jc , g~' (T) merges into g~=1 (T) at Tc, without 

intersection, indicating that the entropy of a defective 
crystal which is nothing but a slope of g~(T) becomes 

identical with the one of a liquid. In fact, this kind of To 
diagram is typically found [13] for the glass transition, 
and the tricritical point at which the equality of the 
entropies is attained is interpreted as the ideal glass 
transition temperature. Above T"' the ideal glass transits 
to a super-cooled liquid and above 17 c , a defective crystal 

transits to an ideal glass. 
Coming back to the original F(r,~;} in eq.(5), on 

the other hand, it is found that at this combination of 
(q; le =0.976 and ~ =0.861, the second order derivative 

of F(T,~t) with respect to ~;vanishes, which is the 

indication of the onset of the spinodal ordering in the 
OD transition. [4] Hence, it is concluded that in the 
framework of CVM thermodynamics, glass transition 

temperature is identical with the spinodal ordering 
temperature. It should be, however, noticed that the 
proper understanding of CG transition needs kinetics 
considerations. In fact, the glass transition has been 
interpreted as a consequence of increased viscosity 
which hinders the liquid-crystal transition in an ordinary 
laboratory time scale. Such kinetics is simulated by 
employing Path Probability Method [14] which is the 
natural extension of the CVM to time domain. This is 
another advantage to employ CVM and one can expect 
to perform a consistent study of CG transition covering 
both thermodynamics and kinetics.[7] 
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