Colored Carbon Hybrid Spherical Microbeads Possessing Shell Composed by TiO₂ and Iron Oxide using Cellulose-Inorganic Hybrid-sphering Technique

Kenji Arinaga,^{a,c} Shoji Nagaoka,^b Shigenori Hamaoka,^c Makoto Takafuji,^a and Hirotaka Ihara^a ^aDepartment of Applied Chemistry and Biochemistry, Kumamoto University, Kumamoto 860-8555 Japan ^bKumamoto Industrial Research Institute, Kumamoto 862-0920 Japan ^cKyushu Inoac Co. Ltd., Fukuoka 812-0013 Japan

Fax: 81-96-365-5172, e-mail: nagaoka@kmt-iri.go.jp

Cellulose, which has been used in various matrix-forming materials, has long been explored as a building material. Particularly, microbeads of cellulose have been used as chromatographic packing materials, immobilization supports for microbes, and cosmetic materials. Cellulose microbeads prepared by the viscose phase-separation method, were monodispersed and spherical. We prepared the cellulose/titanium dioxide (TiO₂) and iron oxide hybrid spherical microbeads by an inorganic hybrid-sphering method based on the phase-separation phenomenon and also prepared carbon/TiO₂-anatase/Fe₂O₃ hybrid spherical microbeads by means of their carbonization for use as a photocatalyst. We also report herein the relationship between cellulose xanthate and the electronic characteristics of inorganic materials used in the inorganic hybrid-sphering process. It was found that: (1) these photoassisted-catalytic adsorbents produce a red color; (2) the reddish color of the microbeads can be controlled by changing the ratio of FeO(OH) to TiO₂; (3) the hybrid spherical microbeads are carbon spherical microbeads with a shell composed of Fe₂O₃ and TiO₂.

Key words: Cellulose, TiO₂, Iron oxide, Spherical Microbeads, Viscose Phase Separation

1. INTRODUCTION

Recent environmental applications of photocatalysis have resulted in the use of numerous photocatalysts including titanium dioxide (TiO_2) , which has the ability to decompose many kinds of contaminants¹⁻⁴ In order to achieve photodecomposition of several organic compound types, Minero et al. have examined the effects of the addition of Al₂O₃ and SiO_2 as inert supports to the TiO_2 photocatalyst suspension⁵. In addition, Taoda et al. have developed hybrid silica microbeads coated sparsely with TiO₂⁶. Nonami et al. have developed an adsorbent that partially modifies the surface of the TiO_2 particles with apatite⁷. The contact area of TiO₂ particles with organic material in the TiO₂-composite has been reduced in order to avoid the composite's photodegradation by active TiO₂ particles⁸. Using the "Phase-separation Method," we can also prepare carbon/TiO₂-anatase hybrid spherical microbeads as a photocatalyst using cellulose spherical microbeads that have been made dense with TiO₂ anatase nano-particles. In fact, the effectiveness of these microbeads in removing acetaldehyde in water as a photo-assisted catalysis has been found to be greater than naked TiO_2^9 . In the present study, we explored the possibility of hybridizing iron oxide to the above-mentioned carbon/TiO₂ hybrid spherical microbeads. Thus, we could

anew photo-assisted-catalytic prepare the adsorbents with the following properties: 1) a red color, utilized as the industrial design color materials; 2) the ability to control the reddish color of the microbeads by changing the ratio of FeO(OH) to TiO_2 ; 3) inhibition of the photodegradation of organic components by reducing the contact area of TiO₂ with organic material containing an inorganic TiO₂ composite; and 4) the hybrid spherical microbeads are carbon spherical microbeads possessing a shell composed by Fe_2O_3 and TiO_2 . We describe herein the preparation and characterization of carbon hybrid spherical microbeads covered with TiO₂ and iron oxide particles, namely colored carbon spherical microbeads.

2. EXPERIMENTAL

2.1 Cellulose/TiO₂/FeO(OH) hybrid spherical microbeads

Cellulose/TiO₂/FeO(OH) hybrid spherical microbeads were made by means of a one-step phase separation method using a cellulose xanthate aqueous solution (cellulose content, 8.9 wt%, Kojin Co. Ltd.) and a sodium polyacrylate aqueous solution (Aquaric DL-453, Mw: 50000, Nippon Shokubai Co., Ltd., Osaka, Japan). TiO₂ powder (P25, Degussa Co. Ltd., average particle size: 20 nm) and FeO(OH) powder (nacalai tesque Co. Ltd.) in the given weight ratio were slowly added to a cellulose xanthate aqueous solution (1000 g). The cellulose xanthate aqueous solution dispersing a mixture of TiO_2 , and FeO(OH) particles was mixed with an aqueous solution (3500 g) containing sodium polyacrylate (340 g) and 28.6 g of CaCO₃ (Okutama Kogyo Co. Ltd.). These materials were then suspended by stirring at 80 °C for 30 min. After heating and congealing, the obtained hybrid spherical microbeads were washed successively with a diluted hydrochloric acid aqueous solution and water.

2.2 Carbon/TiO₂ hybrid spherical microbeads

The carbonization of cellulose/TiO₂/FeO(OH) hybrid spherical microbeads was carried out in the following four steps: (1) freeze-drying process: (2) dehydration: the hybrid spherical microbeads were dehydrated by heating at 300 °C in vacuo for 5 h. (CTF02); (3) carbonization: the carbonized microspheres were heated to 600 °C for over 5 h and then allowed to stand for 4 h (CTF03) under a stream of nitrogen gas; and (4) thermal treatment at 500 °C using CO₂ gas to achieve conversion of the Fe_3O_4 contained in microbeads to Fe_2O_3 (CTF04 series). As a result, particles with diameters of around 50 mm were obtained. As a reference, the Carbon/TiO₂ hybrid spherical microbeads (CT03, TiO₂ content: 40 wt%) without iron oxide were also prepared by (1), (2) and (3)procedures.

2.3 Measurement

Laser micrographs of the hybrid spherical microbeads were obtained using a laser (KEYENCE VK-9500). microscope X-ray diffraction was carried out using an X-ray Diffractometer (Rigaku RINT 2000). Electron probe micro analysis was carried out using JEOL JXA-8900 WD/ED. The colors of the beads were evaluated by specular reflectance excluded (SCE) using a Spectrophotometer CM-2002 (Konica Minolta Sensing, Inc.). The color evaluation was represented by $L^*a^*b^*$, as established by the International Commission on Illumination (CIE). Diffuse reflectance spectra were measured with a UV-VIS spectrophotometer with integrating sphere equipment (JASCO V-560 / ISV-469. JASCO, Tokyo, Japan). The zeta potentials of TiO₂ powder were measured by electrophoresis using the Laser Doppler method (Zetasizernano, Sysmex Corporation, Kobe, Japan). The catalytic evaluation was carried out by the gas-bag method. A given amount of photocatalyst powder (naked TiO₂, P25, Degussa Co. Ltd, CTF04-48: Fe₂O₃; 48 % and CTF04-94: Fe₂O₃; 5 %) which was set in shared culture made from polytetrafluoroethylene plate, was left in a 5 l bag packed with 40 ppm of acetaldehyde gas. The bag was then illuminated with two 20 W black lights (TOSHIBA FL20BLB: 300-400 nm). After a given time of illumination, the aldehyde concentrations were monitored using an acetaldehyde gas detector tube.

3. RESULTS AND DISCUSSION

We examined the addition of iron oxide to the sphering system by the phase separation method in order to add color. The hybridized spherical microbeads were made by a one-step phase separation method using a cellulose xanthate aqueous solution, TiO_2 particles, FeO(OH) particles, and a sodium polyacrylate aqueous solution. Figure 1(a) shows the X-ray diffraction pattern for the microbeads that were obtained by

sphering. The three different peaks in the X-ray diffraction pattern belong to cellulose, TiO₂ (anatase), and FeO(OH), respectively, which constitute the sphering system, i.e. the "phase separation method". The preparation of cellulose/TiO₂/FeO(OH) hybrid spherical microbeads was then carried out (CTF01). Figure 2 shows the diffuse reflectance spectra of hybrid spherical microbeads obtained in each process. The diffuse reflectance spectrum of CTF01 showed a reflectance peak of approximately 580 nm. This reflectance spectrum corresponds to the typical reflectance of yellow color. The $L^*a^*b^*$ of CTF01 determined by spectrophotometer was: L*: 42.0; a*: 9.92; and b*: 34.5. The carbonization of CTF01 was performed by the above-mentioned three steps. In the dehydration process, the X-ray diffraction pattern of cellulose disappeared, as shown in Fig. 1(b). This disappearance was caused by the thermal decomposition of cellulose. Although the X-ray diffraction pattern of TiO₂ showed no change, that of FeO(OH) changed significantly. Usually, FeO(OH) is converted to Fe_2O_3 by dehydration, as shown in reaction (1). In the X-ray diffraction pattern for the product obtained by dehydration, a small peak appearing at $2\theta = 35.440$ belonged to Fe_3O_4 . This phenomenon indicates that FeO(OH) was partially converted to Fe₃O₄. Therefore, the product was colored black due to Fe₃O₄, which is caused by gas produced by the thermal the CO decomposition of cellulose, as shown in reaction (2).

 $2\text{FeO(OH)} \rightarrow \text{Fe}_2\text{O}_3 + \text{H}_2\text{O} (1)$

 $3Fe_2O_3 + CO \rightarrow 2Fe_3O_4 + CO_2$ (2)

Figure 1(c) shows the X-ray diffraction pattern of CTF03. Although the hybrid spherical microbeads were heated in a stream of N_2 gas at 600 °C, the X-ray diffraction pattern of TiO₂ showed no change. In contrast, the X-ray diffraction pattern of Fe₂O₃ was precisely converted to that of Fe₃O₄. Therefore, the hybrid spherical microbeads obtained by the carbonizing process showed magnetic properties. The diffuse reflectance spectra of CTF02 and CTF03 showed no reflectance peak because their surfaces became

black, as shown in Fig. 3. The color of Fe_3O_4 is black, as is that of amorphous carbon, i.e., L^{*}: 23.7, a*: -1.10, and b*: -0.06. The X-ray diffraction pattern of CTF04 is shown in Fig. 1(d). The X-ray diffraction pattern of Fe₃O₄ changed significantly to that of Fe_2O_3 . Figure 3(a), (b) and (c) show a laser micrograph and the EPMA photomappings of Fe and Ti, respectively, of CTF04. The EPMA confirmed that TiO_2 and Fe_2O_3 were fixed on the surface, accounting for the beads' red color, as shown in the laser micrograph in Fig. 3(a). As shown in Fig. 2, the diffuse reflectance spectrum of CTF04 showed a broad reflectance peak from around 600 to 800 nm. This reflectance spectrum corresponds to the typical reflectance of red color. Their $L^*a^*b^*$ indicated L^* : 40.4, a^* : 13.0, and b^* : 14.9 near the value of the $L^*a^*b^*$ of naked Fe_2O_3 . Figure 3(d), (e) and (f) show SEM image, the EPMA photo-mapping of Fe and Ti for the CTF04 cross section, respectively. It was confirmed that hybrid spherical microbeads were the carbon microbeads covered with TiO₂ and Fe₂O₃ and that therefore possessed a shellstructure composed of TiO₂ and Fe₂O₃. This phenomenon can be attributed to the surface electric potential of TiO₂ and FeO(OH) particles in sphering actually being homogeneously minus potentials. It can also be explained by the zeta potentials of TiO₂ and Fe(OH) particles. We have recently confirmed that the distributions of TiO₂ particles contained hybrid spherical on microbeads depend upon the composition of TiO₂

Figure 3. Laser m icrograph and EPMA photo-mappings of CTF04 (a) Laser m icrograph (b) EPMA photo-mappings for Ti on the surface, (c) EPMA photo-mappings for Fe on the surface, (d) SEM image of the cross section (e) EPMA photo-mappings for Ti of the cross section (f) EPMA photo-mappings for Te of the cross section

Colored Carbon Hybrid Spherical Microbeads Possessing Shell Composed by TiO₂ and Iron Oxide using Cellulose-Inorganic Hybrid-sphering Technique

particles¹⁰. Our findings indicate that TiO₂ particles (P-25, Degussa Co. Ltd.) uniformly possessing a minus potential (as shown in Fig. 4(a)) were driven out by the following: the CSS group of cellulose xanthate; the COO group of polyacrylic acid; and the TiO₂ particles localized at the interface between the cellulose xanthate aqueous solution phase and the polyacrylic acid aqueous solution phase. As a result, we obtained cellulose/TiO₂ hybrid spherical microbeads with surfaces densely covered with TiO₂ particles. In contrast, inorganic materials (as shown in Fig. 4(b)) such as TiO₂ (ST-01, Ishihara Sangyo Kaisha, Ltd.), for which the zeta potential distributions are diffused to a plus electric potential (more than +60 mV), are located within the cellulose xanthate phase in hybrid-sphering. Therefore, the microbeads involved with TiO₂ particles were able to be prepared. On the other hand, since both the TiO_2 and FeO(OH) particles adopted in this sphering possessed a homogeneous minus potential in alkaline aqueous solution as shown in Fig. 4(a) and (c), they were driven out by the CSS⁻ group of cellulose xanthate and the COO group of polyacrylic acid, as in the case of the preparation of cellulose/TiO₂ spherical microbeads. Therefore, TiO₂ and FeO(OH) particles were localized at the interface between the cellulose xanthate phase and the PAA aqueous solution phase. As a result, the carbonized microbeads possessed a shell-structure composed of TiO_2 and Fe_2O_3 . We investigated the removal efficiencies of acetaldehyde gas with CTF04-48 (Fe₂O₃ content: 48 %), CTF04-94 (Fe₂O₃ content: 5 %), and CT03 (TiO₂ content: 40%) using black light (wavelength: 300-400 nm). As shown in Fig.

5, the removal efficiency for acetaldehyde gas with CTF04 was smaller than that with naked TiO_2 and CT03 particles. The more Fe_2O_3 contained in the microbeads, the smaller the photocatalytic effect of the TiO_2 decreases.

In conclusion, this phenomenon can be explained by the photocatalytic effect of the TiO_2 particles being inhibited by the shielding of TiO_2 particles from photo-illumination with Fe_2O_3 particles. As such, it appears that the photodegradation of organic components contained in TiO_2 -composite materials can be inhibited due to the contact area of TiO_2 with organic components being reduced because of Fe_2O_3 particles.

REFERENCES

[1] H. Tahiri, Y. Ichou, J. Harrmann, J. Photochem. Photobiol. A: Chem. 114, 219-226(1998).

[2] C.Lettmann, K. Hildenbrand, H.Kisch, W. Macyk, W. F. Maier, Appl. Catal. B: Enviromenta, 1 32, 215-227 (2001)

[3] Y. Zhang, J. C. Crittenden, D. W. Hand, D. L. Perram, J. Solar Energy Engineering, 118, 123-129(1996).

[4] T. Torimoto, H. Yoneyama, Catal. Today, **58**, 133-140 (2000).

[5] Minero, F. Catozzo, E. Pelizzetti, *Langmuir*, 8, 481-486 (1992).

[6] H.Taoda, M.Fukaya, E. Watanabe and K. Tanaka, Proc. of 19th Korea-Japan International Seminar on Ceramics, 471-475 (2002).

[7] H.Taoda, M.Fukaya, E. Watanabe and K. Tanaka, Proc. of 19th Korea-Japan International Seminar on Ceramics, 471-475 (2002).

[8] T. Ibusuki, K. Takeuchi, J. Mol. Catal. 88, 93-102 (1994).

[9] S. Nagaoka, Y. Hamasaki, S. Ishihara, M. Nagata, K. Iio, C.Nagasawa, and H. Ihara, J. Mol. Cat. Chem. A, 177, 255-263 (2002).

[10] S. Nagaoka, K. Arinaga, H. Kubo, S. Hamaoka, T. Toshsihiko, M. Takafuji, H. Ihara, *Polym. J.*, in prints.