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Magnetism and Magneto-resistance of Mo-doped Cr02 
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Mo-dopuig effects were studied for half metallic ferromagnet Cr02• Mixed samples of 
MoxCr1_xOy were prepared by planetary ball mill. X ray diffraction, magnetization M, 
resistivity p and magneto- resistance ratio MRR were measured for x = 0 to 1 with 0.1 step. 

Tetragonal phase of CrOz-type transformed to monoclinic phase of Mo03(11)-type at :X above 
0. 7. M and !MRRI rapidly decreased with increasing Mo content, and disappeared at x above 
0.3. Above x = 0.3, trivalent Cr ions were assumed to be dominant for the magnetic property 
of present system. 
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l. INTRODUCTION 
Cr02 has been known as a half metallic oxide with 

l 00 % spin polarization of 3d conduction electrons. In 
this system, the band structure of majority spins is 
metallic, while the minority spin band has a 
semi-conductive energy gap at the Fermi level [1]. Since 
the perfect spin polarization should result in the large 
magneto-resistance (MR), Cr02 is a candidate to develop 
the spintronics devises such as the spin valve and 
magnetic random access memory (MRAM). Reported 
MR ratio (MRR) for Cr02 granular system, containing 
antiferromagnetic Cr20 3 impurity at grain boundaries, 
showed very small value on the order of- 0.1 % at room 
temperature [2]. Recently, we found that paramagnetic 
Cr20 5 barrier has a possibility to enhance the IMRRI of 
Cr02 system [3]. Recently, impurity doping effects were 
calculated for Cr02 by DV -X a method which showed 
that a slight increase of magnetic moment and Curie point 
Tc by Mo-doping [4]. 

In the present work, tri-oxide of Mo03 was mixed with 
Cr02, and the effects for the magnetism and conductivity 
were investigated. In the present experiments, Mo03 has 
a monoclinic Mo03(11) crystal structure with the lattice 
parameters of a= 0.3954 nm, b = 0.3687 nm, c = 0.7095 
nm and p = 103.75 deg [5]. Cr02 has a tetragonal 

crystal structure with a of 0.4419 nm and b of 0.29154 
nm [6]. In the half-metallic Cr02, all of 3d2 electrons 
exist in the majority up spin band and behave as the 
polarized conduction electrons. 

Previous study on the effect of a few % doping of 
Mo6

+ (4Jl) into Cr02 revealed steep disappearance of 

ferromagnetism with reduction of magnetization and 

Curie point Tc [7]. We also expected so-called 
ferromagnetic quantum critical point (FQCP) [8] for the 

doping of Mo6+ into the CrOz-phase in the (Mo03)x 
(Cr02) 1_x mixed system. 
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At FQCP, the ferromagnetism of Cr02 disappears and, 
for example, a possibility of p-type superconductivity 
may occur. Here we will report the effects of mechanical 
milling on the conductivity and magnetism of Mo03 

/Cr02 mixtures. 

2. SAMPLE PREPARATION AND EXPERIMENTAL 
Commercial Cr03, Cr(OH)3 • nH20 and Mo03 were 

used as the precursor for MoxCr1_xOy samples, where the 
x-values are between 0 and 1. First, we obtained 
CrOOH • 0.5H20 by sintering Cr(OH)3 • nH20 at 523 K 
for 1 hour in air. Then the powder mixture of Cr03, 

CrOOH • 0.5H20 and Mo03 with the mole ratio of 
(1-x)/3 : 2(1-x)/3 : 1 was milled for 1 hour by the 
planetary ball mill (Fritch Pulverisette-7, Germany) with 
Cr-steel vials. The inner diameter and volume of each 
vial were 40 mm and 45 cm\ respectively, and the 
Cr-steel balls with 15 mm diameter were used as the 
grinding media. About 2 g of powder mixture was the 
starting material. The volume ratio of balls and powder 

was about 30: 1. Rotation speed was kept as 700 rpm. 
The ground products were followed by annealing at 

573 K for 4 hours in the flow of oxygen gas, and they 

were characterized as the solid solutions of MoxCr1_xOy 
by x-ray powder diffraction (XRD) as mentioned below. 
Then they were mixed with aqueous solution of Polyvinyl 
Alcohol (PV A) and pressed to be a 1 mm thick pellet 

with 5 mm diameter. 
Vibrating sample magnetometer (VSM) and the super­

conducting quantum interference devise (SQUID) were 
used for the magnetization measurements. Measurements 
of resistivity and magneto-resistance were performed for 
dried samples by usual 4-terminals method in DC 
magnetic field between -1 T and 1 T. 

3. EXPERIMENTAL RESULTS 
3.1 X-ray diffractions 

Powder CuK a -XRD were measured for the milled 
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samples of nominal (Mo03)x(Cr02kx· We obtained the 
XRD pattern like as that of Cr02 in 0 ::; x ::; 0.7 
accompanied by the decreasing of diffraction angle of 
2 e as X increased. Meanwhile, in 0. 7::; X::; 1.0, the XRD 
pattern was similar to that of Mo03(1I). At x = 0.7, two 
XRD patterns like as Cr02 and Mo03 coexisted. As 
depicted in Fig. 1, the diffraction angle of ( 110) reflection 
of Cr02 shifts to lower value, according to the increasing 
of Mo content. Above X = 0. 7, diffraction angle 2 e of 
(110)-reflection becomes nearly constant as shown in 
Fig. I. 
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Fig. I (IIO) main peaks ofCr02 and Mo03 in 0::; x::; 1.0. 
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Fig.2 Lattice parameters of tetragonal phase in 0::; x::; 
0. 7, and monoclinic phase in 0. 7::; x::; 1.0. 

In Fig. 2, calculated lattice parameters from XRD 
results are shown. They show that the extension of a-axis 
in the tetragonal phase below x = 0.7, and the shrinking 
of c-axis in the monoclinic phase above x = 0. 7 as x 
increases. The fJ of monoclinic phase was almost constant 
at about I 04 deg in 0. 7::; x::; 1.0. 

From the above results, we convinced of the successful 
doping of Mo6+ to the Cr02 phase in I ::; x ~ 0.6, 
considering the larger ion radius ofMo6+ than that ofCr4+. 

However, above x=0.8, the stable crystalline phase 
changed to the Mo03{II)-type. In 0.8 ::; x::; l, we can 
assume that the Cr3+-ions are mainly doped into Mo03 

from the electric and magnetic properties as will be 
discussed below. In anyway, we can express the prepared 
samples as MoxCr1.x01 , where x = 0- I and y = 2- 3. 
From the half widths of XRD peaks, the grain sizes of 
MoxCr1.xOy were estimated as 10-20 nm, which means 
that the present system is composed of the MoxCr1_xOy 
nano-particles. 

3 .2 Magnetization 
Magnetization curves at 77 K are shown in Fig. 3. The 

saturation magnetization M, rapidly decreased at x = 0.2, 
and kept low values above x = 0.3. 
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Fig.3 Magnetization curves ofMoxCr1.xOy at 77 K. 

Temperature dependences of magnetization M under 
the field of 5 kOe are shown in Fig.4. The M were nearly 
saturated at 77 K in 0::; x::; 0.3, but the M-value at 77 K 
steeply decreased at x = 0.2. The vertical arrows are 
indicating the inflection points of the M(T)-curves which 
roughly give the ferromagnetic Curie point Tc. As shown 
in Fig. 4, rapid decreasing of Tc was observed at x = 0.2-
0.3. The above results mean that the ferromagnetism, 
which is induced from large electron spin polarization, 
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Fig.4 Temperature dependence of magnetization at 5 kOe. 
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Fig. 5 x-dependence of saturation magnetization M5 at 77 
K and 300 K. 
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Fig.6 x-dependence of remanent magnetization Mr at 
77 K and 300 K. 
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Fig.7 x-dependence of coercive force He at 77 K and 
300 K. 

smeared out by the Mo6+-doping above x = 0.3. The 
x-dependence of saturation magnetization M,, remanent 
magnetization Mr and coercive force He at 77 K and 300 
K are shown in Fig. 5, 6 and 7, respectively. All of the 
magnetic quantities become very small at x = 0.2 -0.3. 
Therefore we can identify the vanishing point of half 
metallic ferromagnetism in MoxCr 1_xOy (y- 2) as x- 0.3. 

3.3 Resistivity and magneto-resistance effect 
In Fig. 8, temperature dependence of electrical 

resistivity p is shown for x = 0 - 0.5 samples. Since 
pure Cr02 showed the tunneling magneto-resistance 
(TMR) at 77 K and 300 K [3] by the spin polarized 3d 
electrons, we plotted log p for l!T112 following the TMR 

theory [9]. As shown in Fig. 8, log p is linear with i!T112 

up to x = 0.5 between about 150 K and 350 K. This result 
looks like as that the half metallic property does not 
disappear completely at x = 0.5. However the magnitude 
of p, which is also shown in Fig. 9, shows steeply 
increases above x = 0.3 and becomes one thousand time 
larger than that of Cr02 (x = 0) at x = 0.5. The increasing 
of p · corresponds to the disappearance of ferromagne­
tism in this system. 
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Fig.8 Temperature dependence of electrical resistivity. 
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Fig.9 x-dependence of electrical resistivity at 77 K and 
300K. 
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In Fig. I 0, magneto-resistance ratio (MRR) of 
MoxCr1_xOy are shown, where MRR is defined here as 
[ p (Hp)- p (H)]/ p (Hp), where Hp is the peak field at 

which p (H) becomes maximum. The /MRR/ at 77 K was 

about 4 % for pure Cr02, but it steeply decreased as the 
Mo-content increased. Above x == 0.3, /MRR/ becomes 
negligibly small, which also shows the disappearance of 
ferromagnetism. 
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Fig.l 0 x-dependence of magneto-resistance ratio at 77 K 
and 300 K. 

DISCUSSION 
Now we discuss the ionic states of Cr based on the 

above experimental results. From the XRD results, we 
confirmed that the successful doping ofMo6+ to the Cr02 
phase in I :s; x :s; 0.6. Meanwhile, the MoOrtype 
crystalline phase was observed in 0.8 :s; x :s; I. Here we 
think that the c~+-ions play the important role in the 
present MoxCr1_xOy system as following. 

For example, the MoxCr 1_xOy can be assumed as 
(Mo6+)x(Cr4+) 1 _3x(C~+hx02 in 0 $ x $ 113. In that case, 
no Cr4+ ion exists at x =I/3 (- 0.3), where the half­
metallic ferromagnetism disappears. In the region of 
l/3 $X$ 2/3, (Mo6+)4xr[3(l+x)](C~+)4(I-x}l[3(!+x)]D(3x-!)1[3(!+x)] 
0 2 is possible considering 0 as the vacancy in CrOr 
type crystal structure. In 2/3 :s; x :s; I, we can assume 
(Mo6+)x(C~) 1 _x 0 3_ g where b =3(1-x)/2 is the oxygen 
deficiency. Then the coexistence of two phases of 
Mo6+o_sJCr3+o.z7Do_20z (CrOz-type) and Mo6+o_67C~\33 
0 3-o.s (Mo03-type) is capable atx=2/3 (-0.7). 

The above example shows one of the possibilities, but 
the importance of C~+, which composes an antiferro­
magnetic oxide of Cr20 3, can be sufficiently elucidated 
for the present system. 

If there is the ferromagnetic quantum critical point 
(FQCP) of MoxCr1_xOy near x = 0.3, p-type super­
conductivity can be expected at very low temperature [9]. 
Therefore, electronic and magnetic properties below 77 K 
is very interesting, and they shall be reported in the near 
future. 
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