Magnetism and Magneto-resistance of Mo-doped CrO₂

Yoshihide Kimishima, Toshiki Sasaki, Masatomo Uehara, and Masahiro Matsuo

Department of Physics, Faculty of Engineering, Graduate School of Yokohama National University, Tokiwadai 79-5, Hodogaya, Yokohama 240-8501, Japan Fax: +81-45-339-4182, e-mail: kimi@ynu.ac.jp

Mo-doping effects were studied for half metallic ferromagnet CrO_2 . Mixed samples of $Mo_xCr_{1-x}O_y$ were prepared by planetary ball mill. X ray diffraction, magnetization M, resistivity ρ and magneto- resistance ratio MRR were measured for x = 0 to 1 with 0.1 step. Tetragonal phase of CrO_2 -type transformed to monoclinic phase of $MoO_3(II)$ -type at x above 0.7. M and |MRR| rapidly decreased with increasing Mo content, and disappeared at x above 0.3. Above x = 0.3, trivalent Cr ions were assumed to be dominant for the magnetic property of present system.

Key Words : Half-metal, ferromagnetic oxide, Magnetization, Magneto-resistance

1. INTRODUCTION

CrO₂ has been known as a half metallic oxide with 100 % spin polarization of 3d conduction electrons. In this system, the band structure of majority spins is metallic, while the minority spin band has a semi-conductive energy gap at the Fermi level [1]. Since the perfect spin polarization should result in the large magneto-resistance (MR), CrO₂ is a candidate to develop the spintronics devises such as the spin valve and magnetic random access memory (MRAM). Reported MR ratio (MRR) for CrO₂ granular system, containing antiferromagnetic Cr2O3 impurity at grain boundaries, showed very small value on the order of -0.1 % at room temperature [2]. Recently, we found that paramagnetic Cr_2O_5 barrier has a possibility to enhance the |MRR| of CrO₂ system [3]. Recently, impurity doping effects were calculated for CrO_2 by DV-X α method which showed that a slight increase of magnetic moment and Curie point $T_{\rm c}$ by Mo-doping [4].

In the present work, tri-oxide of MoO₃ was mixed with CrO₂, and the effects for the magnetism and conductivity were investigated. In the present experiments, MoO₃ has a monoclinic MoO₃(II) crystal structure with the lattice parameters of a = 0.3954 nm, b = 0.3687 nm, c = 0.7095 nm and $\beta = 103.75$ deg [5]. CrO₂ has a tetragonal crystal structure with *a* of 0.4419 nm and *b* of 0.29154 nm [6]. In the half-metallic CrO₂, all of $3d^2$ electrons exist in the majority up spin band and behave as the polarized conduction electrons.

Previous study on the effect of a few % doping of Mo^{6+} (4 d^0) into CrO_2 revealed steep disappearance of ferromagnetism with reduction of magnetization and Curie point T_c [7]. We also expected so-called ferromagnetic quantum critical point (FQCP) [8] for the doping of Mo^{6+} into the CrO_2 -phase in the (MoO₃)_x (CrO₂)_{1-x} mixed system.

At FQCP, the ferromagnetism of CrO_2 disappears and, for example, a possibility of *p*-type superconductivity may occur. Here we will report the effects of mechanical milling on the conductivity and magnetism of MoO₃ /CrO₂ mixtures.

2. SAMPLE PREPARATION AND EXPERIMENTAL

Commercial CrO₃, Cr(OH)₃ • nH₂O and MoO₃ were used as the precursor for Mo_xCr_{1-x}O_y samples, where the *x*-values are between 0 and 1. First, we obtained CrOOH • 0.5H₂O by sintering Cr(OH)₃ • nH₂O at 523 K for 1 hour in air. Then the powder mixture of CrO₃, CrOOH • 0.5H₂O and MoO₃ with the mole ratio of (1-x)/3 : 2(1-x)/3 : 1 was milled for 1 hour by the planetary ball mill (Fritch Pulverisette-7, Germany) with Cr-steel vials. The inner diameter and volume of each vial were 40 mm and 45 cm³, respectively, and the Cr-steel balls with 15 mm diameter were used as the grinding media. About 2 g of powder mixture was the starting material. The volume ratio of balls and powder was about 30 : 1. Rotation speed was kept as 700 rpm.

The ground products were followed by annealing at 573 K for 4 hours in the flow of oxygen gas, and they were characterized as the solid solutions of $Mo_xCr_{1-x}O_y$ by x-ray powder diffraction (XRD) as mentioned below. Then they were mixed with aqueous solution of Polyvinyl Alcohol (PVA) and pressed to be a 1 mm thick pellet with 5 mm diameter.

Vibrating sample magnetometer (VSM) and the superconducting quantum interference devise (SQUID) were used for the magnetization measurements. Measurements of resistivity and magneto-resistance were performed for dried samples by usual 4-terminals method in DC magnetic field between -1 T and 1 T.

3. EXPERIMENTAL RESULTS

3.1 X-ray diffractions

Powder $CuK\alpha$ -XRD were measured for the milled

samples of nominal $(MOO_3)_x(CrO_2)_{1-x}$. We obtained the XRD pattern like as that of CrO_2 in $0 \le x \le 0.7$ accompanied by the decreasing of diffraction angle of 2θ as x increased. Meanwhile, in $0.7 \le x \le 1.0$, the XRD pattern was similar to that of $MoO_3(II)$. At x = 0.7, two XRD patterns like as CrO_2 and MoO_3 coexisted. As depicted in Fig. 1, the diffraction angle of (110) reflection of CrO_2 shifts to lower value, according to the increasing of Mo content. Above x = 0.7, diffraction angle 2θ of (110)-reflection becomes nearly constant as shown in Fig.1.

Fig.1 (110) main peaks of CrO_2 and MoO_3 in $0 \le x \le 1.0$.

Fig.2 Lattice parameters of tetragonal phase in $0 \le x \le 0.7$, and monoclinic phase in $0.7 \le x \le 1.0$.

In Fig. 2, calculated lattice parameters from XRD results are shown. They show that the extension of *a*-axis in the tetragonal phase below x = 0.7, and the shrinking of *c*-axis in the monoclinic phase above x = 0.7 as x increases. The β of monoclinic phase was almost constant at about 104 deg in $0.7 \le x \le 1.0$.

From the above results, we convinced of the successful doping of Mo^{6^+} to the CrO_2 phase in $1 \le x \le 0.6$, considering the larger ion radius of Mo^{6^+} than that of Cr^{4^+} .

However, above x=0.8, the stable crystalline phase changed to the MoO₃(II)-type. In $0.8 \le x \le 1$, we can assume that the Cr³⁺-ions are mainly doped into MoO₃ from the electric and magnetic properties as will be discussed below. In anyway, we can express the prepared samples as Mo_xCr_{1-x}O_y, where $x = 0 \sim 1$ and $y = 2 \sim 3$. From the half widths of XRD peaks, the grain sizes of Mo_xCr_{1-x}O_y were estimated as 10~20 nm, which means that the present system is composed of the Mo_xCr_{1-x}O_y nano-particles.

3.2 Magnetization

Magnetization curves at 77 K are shown in Fig. 3. The saturation magnetization M_s rapidly decreased at x = 0.2, and kept low values above x = 0.3.

Fig.3 Magnetization curves of $Mo_x Cr_{1-x}O_y$ at 77 K.

Temperature dependences of magnetization M under the field of 5 kOe are shown in Fig.4. The M were nearly saturated at 77 K in $0 \le x \le 0.3$, but the M-value at 77 K steeply decreased at x = 0.2. The vertical arrows are indicating the inflection points of the M(T)-curves which roughly give the ferromagnetic Curie point T_c . As shown in Fig. 4, rapid decreasing of T_c was observed at $x = 0.2 \sim$ 0.3. The above results mean that the ferromagnetism, which is induced from large electron spin polarization,

Fig.4 Temperature dependence of magnetization at 5 kOe.

Fig. 5 x-dependence of saturation magnetization M_s at 77 K and 300 K.

Fig.6 x-dependence of remanent magnetization M_r at 77 K and 300 K.

Fig.7 x-dependence of coercive force H_c at 77 K and 300 K.

smeared out by the Mo⁶⁺-doping above x = 0.3. The x-dependence of saturation magnetization M_{s} , remanent magnetization M_{r} and coercive force H_{c} at 77 K and 300 K are shown in Fig. 5, 6 and 7, respectively. All of the magnetic quantities become very small at $x = 0.2 \sim 0.3$. Therefore we can identify the vanishing point of half metallic ferromagnetism in Mo_xCr_{1-x}O_y ($y \sim 2$) as $x \sim 0.3$.

3.3 Resistivity and magneto-resistance effect

In Fig. 8, temperature dependence of electrical resistivity ρ is shown for $x = 0 \sim 0.5$ samples. Since pure CrO₂ showed the tunneling magneto-resistance (TMR) at 77 K and 300 K [3] by the spin polarized 3*d* electrons, we plotted log ρ for $1/T^{1/2}$ following the TMR theory [9]. As shown in Fig. 8, log ρ is linear with $1/T^{1/2}$ up to x = 0.5 between about 150 K and 350 K. This result looks like as that the half metallic property does not disappear completely at x = 0.5. However the magnitude of ρ , which is also shown in Fig. 9, shows steeply increases above x = 0.3 and becomes one thousand time larger than that of CrO₂ (x = 0) at x = 0.5. The increasing of ρ corresponds to the disappearance of ferromagnetism in this system.

Fig.8 Temperature dependence of electrical resistivity.

Fig.9 x-dependence of electrical resistivity at 77 K and 300 K.

In Fig. 10, magneto-resistance ratio (*MRR*) of $Mo_x Cr_{1-x}O_y$ are shown, where *MRR* is defined here as $[\rho(H_p) - \rho(H)]/\rho(H_p)$, where H_p is the peak field at which $\rho(H)$ becomes maximum. The |*MRR*| at 77 K was about 4 % for pure CrO₂, but it steeply decreased as the Mo-content increased. Above x = 0.3, |*MRR*| becomes negligibly small, which also shows the disappearance of ferromagnetism.

Fig.10 x-dependence of magneto-resistance ratio at 77 K and 300 K.

DISCUSSION

Now we discuss the ionic states of Cr based on the above experimental results. From the XRD results, we confirmed that the successful doping of Mo^{6+} to the CrO_2 phase in $1 \le x \le 0.6$. Meanwhile, the MoO₃-type crystalline phase was observed in $0.8 \le x \le 1$. Here we think that the Cr^{3+} -ions play the important role in the present $Mo_xCr_{1-x}O_y$ system as following.

For example, the $Mo_xCr_{1-x}O_y$ can be assumed as $(Mo^{6+})_x(Cr^{4+})_{1-3x}(Cr^{3+})_{2x}O_2$ in $0 \le x \le 1/3$. In that case, no Cr^{4+} ion exists at x = 1/3 (~ 0.3), where the half-metallic ferromagnetism disappears. In the region of $1/3 \le x \le 2/3$, $(Mo^{6+})_{4x}[3(1+x)](Cr^{3+})_{4(1-x)}[3(1+x)] \square_{(3x-1)}[3(1+x)]$ O_2 is possible considering \square as the vacancy in CrO_2 -type crystal structure. In $2/3 \le x \le 1$, we can assume $(Mo^{6+})_x(Cr^{3+})_{1-x}O_3 - \delta$ where $\delta = 3(1-x)/2$ is the oxygen deficiency. Then the coexistence of two phases of $Mo^{6+}_{0.53}Cr^{3+}_{0.27}\square_{0.2}O_2$ (CrO_2 -type) and $Mo^{6+}_{0.67}Cr^{3+}_{0.33}$ $O_{3-0.5}$ (MOO_3 -type) is capable at x = 2/3 (~0.7).

The above example shows one of the possibilities, but the importance of Cr^{3+} , which composes an antiferromagnetic oxide of Cr_2O_3 , can be sufficiently elucidated for the present system.

If there is the ferromagnetic quantum critical point (FQCP) of $Mo_xCr_{1-x}O_y$ near x = 0.3, *p*-type superconductivity can be expected at very low temperature [9]. Therefore, electronic and magnetic properties below 77 K is very interesting, and they shall be reported in the near future.

ACKNOWLEDGEMENT

The present work was supported by the "Strong Correlation Technology Project" in Venture Business Laboratory of Yokohama National University.

REFERENCES

- [1] K. Schwarz, J. Phys. F : Met. Phys., 16, L211-15 (1986).
- [2] J. M. D. Coey, A. E. Berkowitz, Ll. Balcells, F.F. Putris, and A. Barry, *Phys. Rev. Lett.*, **80**, 3815-18 (1998).
- [3] Y. Kimishima, M. Uehara, Y. Satoh, and T. Sasaki, *Trans. Magn. Soc. Jpn.*, 4, 17-20 (2004).
- [4] K. Suzuki, private communication.
- [5] E. M. McCarron, II and J. C. Calabrese, J. Solid State Chem., 91, 121-25 (1991).
- [6] J. K. Burdett, G. J. Miller, J. W. Richardson Jr. and J. V. Smith, J. Am. Chem. Soc., 110, 8064-71 (1988).
- [7] R. D. Shannon, B. L. Chamberland and C. G. Frederick, J. Phys. Soc. Jpn., 31, 1650-56 (1971).
- [8] S. S. Saxena, P. Agarwal, K. Ahllan, F.M. Grosche, R. K. W. Haselwimmer, M.J. Stelner, E. Pugh, I.R. Walker, S.R.Jullan, P. Monthoux, G.G. Lonzarich, A. Huxley, I. Shelkin, D. Braithwalte and J. Flouquet, *Nature*, 406, 587-92 (2000).
- [9] J. Inoue, S. Maekawa, Phys. Rev B, 53, R11927-29 (1996).

(Received December 10, 2005; Accepted January 19, 2006)