Synthesis and Structural Characterization of BaTiO₃-SiO₂ Aerogels

Z. P. Wang¹, L. Miao^{1*}, Y. Ina¹, S. Tanemura^{1,2}, M. Tanemura¹ S. Toh³, K. Kaneko³

¹Department of Environmental Technology, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, JAPAN

²Materials R&D Laboratory, Japan Fine Ceramics Centre, 2-4-1 Mutsuno, Atsuta-ku, Nagoya 456-8587, Japan

³Department of Materials Science and Engineering, HVEM Lab., Kyushu University, Hakozaki 6-10-1, Higasi-ku, Fukuoka 812-8581, Japan

Fax: 81-52-735-5024, *e-mail: miao.lei@nitech.ac.jp

Abstract: BaTiO₃-SiO₂ aerogels were prepared by sol-gel route with supercritical drying technique, after silica wet gel was dipped into BaTiO₃ solution. In order to compare with the properties of compounded aerogels, pure BaTiO₃ nanoparticles were also prepared by the sol-gel method. These BaTiO₃-SiO₂ aerogels and BaTiO₃ nanoparticles were characterized by X-ray diffraction (XRD), Raman spectra, transmission electron microscopy (TEM) and photoluminescence (PL) spectra. The size of compounded aerogel nanoparticles distributed from 7 to 20 nm when the BaTiO₃-SiO₂ aerogels were heated at 800 °C. The intensity of PL was obviously increased, comparing with the one of pure BaTiO₃ heated at the same temperature.

Key words: BaTiO₃, compounded aerogels, photoluminescence, supercritical drying method

1. INTRODUCTION

It is well known that aerogel is a fractal type of network material with high surface areas, low density and high porosities ^[1]. These materials are extremely interesting and many commercial applications have been found, such as insulators, water purification, optic coating, optics and so on ^[2]. Silica aerogel is one kind of these materials. There are many important attributes about silica aerogel in catalytic, insulating and optical properties ^[3,4]. At the same time, silica aerogel is used as the matrix for other kinds of researches, for example narrow-band-gap semiconductors doped into silica aerogel to improve the optical properties ^[5], GeO₂ doped silica aerogel in order to raise the refractive index ^[6].

Due to their wide variety of physical properties such as piezoelectricity, ferroelectricity and electro-optic effect. perovskite-type oxides have seen an explosion of interest over the last few years. Barium titanate (BaTiO₃) as a typical perovskite material has been attractive for its fundamental research and perspective applications. BaTiO₃ is negative uniaxial crystal when it is tetragonal phase and the nonlinear optical properties of barium titanate were already known 40 years ago ^[7]. Recently the nonlinear optical properties of BaTiO₃ embedded by noble metal nanoparticles were investigated because barium titanate thin films have high dielectric constants, which could strongly influence the local fields around the metal particles ^[8]. But to the best of our knowledge, no work has been reported about the optical properties of BaTiO₃ nanocrystals doped into silica aerogel up to now.

For the sake of BaTiO₃ nanoparticles doped into silica aerogel, ultrafine BaTiO₃ nanoparticles were required to obtain at first. The production and characterization about BaTiO₃ have been performed by many researchers. Nanocrystalline BaTiO₃ powder has been prepared by various methods ^[9], such as solid phase method and gas phase reaction ^[10]. But the most popular methods for preparing BaTiO₃ nanoparticles are liquid phase processes such as hydrothermal method, sol-gel method, micro-emulsion method and low temperature direct synthesis ^[10]. It was reported that the ultrafine BaTiO₃ powder with an average size of approximately 7 nm had been produced ^[11]. Nevertheless, Uchino et al. ^[12] reported the disappearance of the tetragonal ferroelectric structure below a critical size of 120 nm at the room temperature. Frey et al. ^[13] observed no electric hysteresis with 25 nm crystals and no anomaly of the dielectric constant at the Curie point.

To keep the tetragonal phase of $BaTiO_3$, which has ferroelectricity, a possible strategy is to introduce the $BaTiO_3$ solution into the silica aerogel matrix. The supercritical drying technique may be a suitable method for preparation of silica aerogel doped with $BaTiO_3$. In this paper, with the supercritical drying method, some fractions of $BaTiO_3$ nanoparticles have been successfully incorporated into silica aerogel, $BaTiO_3$ -SiO₂ compounded aerogels can be obtained.

2 EXPERIMENTAL

Ba(OH)₂•8H₂O, acetic acid, isopropanol, titanium tetraisopropoxide(TTIP), tetramethyl orthosilicate (TMOS), ethanol and ammonia solution were adopted as starting materials for preparation of BaTiO₃-SiO₂ aerogels through sol-gel and the supercritical drying process. The flow chart of BaTiO₃-SiO₂ aerogels synthesis used in this study is outlined in Fig.1.

Firstly silica wet gel was produced in a one-step synthesis method by hydrolysis and polycondensation of TMOS diluted in a solvent ethanol using ammonium hydroxide (NH₄OH at 0.1 mol/l) as a catalyst with aging for 10 hrs. BaTiO₃ precursor solution was prepared from Ba (OH) $_2$ •8H₂O, acetic acid, isopropanol and TTIP according to the following method: Ba(OH) $_2$ •8H₂O was dissolved by stirring and heating in a 1:1 mixed solution of acetic acid and isopropanol for 30 minutes. Then a stoichiometric amount of TTIP was added dropwise after cooling this solution to room temperature. After stirring a few minutes a clear

Fig.1 Flow-chart illustrating the procedure for the preparation of $BaTiO_3$ -SiO₂ aerogels

solution was obtained. Then silica wet gel was dipped into BaTiO₃ precursor solution for 24 hrs in order to form the compounded wetgels. BaTiO₃-SiO₂ compounded aerogels were obtained through the supercritical drying process with liquid CO₂ as drying medium. Then the samples were heated at 600°C, 700°C and 800°C and kept for $2\sim10$ hrs for crystal growth respectively. In order to analyze the properties of BaTiO₃-SiO₂ aerogels powder, pure BaTiO₃ powder was obtained from BaTiO₃ gels by sol-gel method, which were heated at 600°C, 700°C, 800°C and 900°C respectively.

S1, S2, S3 and S4 were defined the samples of pure BaTiO₃ powder obtained when BaTiO₃ wet gels were heated at 600°C, 700°C, 800°C and 900°C, respectively. S5 and S6 were defined the samples of BaTiO₃-SiO₂ aerogels heated at 800°C and unheated at room temperature, respectively. The test and measurement for S1, S2, S3, S4, S5 and S6 were listed in table I.

Tab. I The list of test and measurement for the samples

	S 1	S2	S 3	S4	S5	S 6
XRD	0	0	0	0	0	0
Raman		0				
TEM		0			0	
PL		0	0		0	

O showed that the sample was tested in this work.

Identification of synthesized phase and estimation of crystalline size of $BaTiO_3$ -SiO₂ aerogel powder and $BaTiO_3$ powder were investigated by powder XRD measurement. XRD data was recorded on a diffractometer (Model RINT2000, Rigaku Co., Tokyo, Japan), using CuKa1 radiation, and collected over a 20

range of $10^{\circ} \sim 80^{\circ}$ with a scanning step of 0.01° at room temperature. The average size and morphology of BaTiO₃-SiO₂ aerogels and BaTiO₃ particles were observed by TEM. The Raman spectroscopy, with the 1064nm lines of the exciting source from an Nd-YAG laser was used for the phase identification. The PL spectrum was taken with 325.0 nm exciting wavelength of an argon ion laser.

3 RESULTS and DISCUSSION

3. 1 Structural characterization

Fig. 2 shows the XRD patterns of pure BaTiO₃ powder heat treated at different temperature ranging from 600 to 900°C_o Yong-I. Kim et al^[14] reported that the tetragonal phase has two peaks, (002) and (200), which are clearly separated near 20=45°, while only (200) peak of the cubic phase lies between tetragonal peaks, however, if the size of crystallite decreases, the separated two peaks of tetragonal phase may be overlapped because of he broadening of diffraction peaks. Fig. 2 shows that the peak shapes of pure BaTiO₃ powder are not obviously changed except for the peaks intensities when the heat treatment temperature is increased. In order to prove whether the tetragonal phase exists in pure BaTiO₃ powder or not, the measurement of Raman spectrum had been done.

Fig.2 the XRD patterns of pure $BaTiO_3$ powder heat treated at 600°C (a), 700°C (b), 800°C (c) and 900°C (d) respectively.

Fig.3 Raman spectra of $BaTiO_3$ powder heat treated at 700°C

149

Fig.3 shows the Raman spectrum of BaTiO₃ powder heat treated at 700°C. From the Raman spectrum, it could be found that Raman spectrum of the powder contains the Raman peaks corresponding to the cubic and tetragonal phases. The peak around $307 \text{cm}^{-1[14,15]}$ is a typical one for the tetragonal BaTiO₃, while the peak at $522 \text{cm}^{-1[14,15]}$ is characterized as one of the cubic phase in BaTiO₃. The result of Raman spectrum supports that pure BaTiO₃ powder in this work contains both cubic and tetragonal phases.

The XRD patterns of BaTiO₃-SiO₂ aerogels at room temperature and heated at 800°C are shown in Fig.4. There is only peak in the XRD pattern of BaTiO₃-SiO₂ aerogels (a) at room temperature, because it comes from the amorphous SiO₂. It shows that the BaTiO₃-SiO₂ aerogels at room temperature are amorphous. The BaTiO₃ nanocrystals were obtained in compounded aerogels when BaTiO3-SiO2 aerogels were heated at 800°C, which can be concluded from the sharpness of the diffraction peaks (b). Fig.5 shows the electron diffraction pattern of BaTiO₃-SiO₂ aerogels heat treated at 800°C. Polycrystalline structures of BaTiO₃-SiO₂ aerogels can be identified from the rings clearly seen in Fig.5. Fig. 4 shows that the peak positions of XRD patterns in BaTiO₃-SiO₂ aerogels were different from the ones in pure BaTiO₃ powder. It was speculated that the BaTiO₃ nanocrystals were obtained, simultaneously new compound generated BaTiO₃-SiO₂ when the compounded aerogels were heated at 800°C.

Fig.5 Electron diffraction pattern of $BaTiO_3\mathchar`-SiO_2$ aerogels heated at $800^\circ\mbox{C}$

Fig. 6 TEM image of $BaTiO_3\mathchar`-SiO_2$ aerogels heated at $800^{\circ}\mbox{C}$

The TEM image of $BaTiO_3$ -SiO₂ aerogels heated at 800°C is shown in Fig. 6. The size distribution of the particles ranges from 7 to 20 nm. The size and shape of $BaTiO_3$ particles can be affected by the silica aerogels. The structural styles of $BaTiO_3$ particles in silica aerogels were extracted that some $BaTiO_3$ particles loaded in pores of silica aerogel and others entered into the lattices of silica aerogel. The growth mechanics of $BaTiO_3$ particles in aerogels was that $BaTiO_3$ particles were adsorbed by silica aerogel at the beginning, however, the growth of $BaTiO_3$ particles was limited when $BaTiO_3$ -SiO₂ aerogels were heated at 800°C. The silica aerogel played a model role to limit the growth of $BaTiO_3$ in $BaTiO_3$ -SiO₂ aerogels were less than ones of pure $BaTiO_3$ powder.

3.2 Optical characterization

Fig.7 shows PL spectra of the BaTiO₃-SiO₂ aerogels heat treated for 2 hrs at 800°C in the air and the BaTiO₃ powder heat treated at 700°C and 800°C in the air. According to the PL spectra of Fig.7, the intensity of the PL was not obviously changed when the heat treatment temperature of pure BaTiO₃ powder was increased. However, the intensity of BaTiO3-SiO2 compounded aerogels increased when they were heated at 800°C. Fig.7 shows that the shapes of curves are not changed. This finding indicated strongly that the room- temperature PL stemmed from the BaTiO₃ nanoparticles. A comparison of the different samples revealed that the PL behavior of the $BaTiO_3$ -SiO_2 compounded aerogels was stronger than the ones of pure $BaTiO_3$ powder. It was possible because the BaTiO₃ nanoparticles of BaTiO₃-SiO₂ compounded aerogels were less than the ones of pure BaTiO₃ powder.

Fig.7 PL spectra of $BaTiO_3$ -SiO₂ compounded aerogels heated at 800°C (a) and pure $BaTiO_3$ powder heated at 700°C (b) and 800°C(c)

4 CONCLUSIONS

BaTiO₃ nanoparticles dispersed silica aerogel were prepared by a sol-gel route combined with supercritical drying method. There was good crystallinity when the BaTiO₃-SiO₂ aerogels were heated at 800°C. BaTiO₃ nanoparticels were loaded in the silica aerogel matrix with the sizes from 7 to 20 nm. Silica aerogel played a model role to limit the growth of BaTiO₃ nanoparticles in compounded aerogels when BaTiO₃-SiO₂ aerogels were heated at 800°C, so the particles of BaTiO₃-SiO₂ aerogels were less than the ones of pure BaTiO₃ powder. The PL intensity of BaTiO₃-SiO₂ aerogels heated at 800°C was stronger than the ones of pure BaTiO₃ powder heated at 700°C and 800°C. The properties and components of compounded aerogels will be investigated further in future work when BaTiO₃-SiO₂ aerogels are heated at different temperatures.

ACKNOWLEDGEMENT

This research is supported by a grant from the NITECH 21st Century COE program, "World Ceramics Center for Environment Harmony".

REFERRENCE

[1]C.J. Brinker, G.W. Scherer, Sol-Gel Science, The Physics and Chemistry of Sol-Gel Processing, Academic Press, New York, 1989, ISBN 0-12-134970-5.

[2]L.W. Hrubesh, Chem. Industry 24 (1989) 824.

[3]C.J. Brinker, R.J. Kirkpatrick, D.R. Tallant, B.C. Bunker, J. Non-Cryst. Solids 99(1988) 418

[4]L.C. Klein (Ed.), Sol-Gel Technology for Thin Films, Fibers, Preforms, Electronics and Specialty shapes, Noyes, Park Ridge, NJ, 1987.

[5]L.Z. Yao, C.H. Ye, C.M. Mo. W.L. Cai, L.D. Zhang, J. Cryst. Growth 216, 147-151(2000).

[6]S. Grandi, P. Mustarelli, A. Magistris, M. Gallorini, E. Rizzio. J. Non-Cryst. Solids 303, 208-217 (2002).

[7].C. Miller, D.A. Kleinman, A. Savage, *Phys. Rev. Lett.* 11(4), 146-149 (1963).

[8]Yong Yang, Jianlin Shi, Weiming Huang,

Shugang Dai, Lin Wang, *Mater. Lett.* 56 1048-1052(2002).

[9]Weiling Luan, Lian Gao, Cera. Intel. 27 645-648 (2001).

[10]Keigo Suzuki, Kazunori Kijima, J. Ceram. Soc.
Jpn. Supplement 112-1, Pacrim5 Special Issue, 112
(5) S916-S923 (2004).

[11]Keigo Suzuki and Kazunori Kijima, Jpn. J. Appl. Phys., 44(4A) 2081-2082 (2005).

[12]Uchino,K., Sadamaga, E., Oonish, T,. Morohashi, T. , Yamamura, H., *Ceram. Transactions.* 8,107 (1980).

[13]Frey, M. H., Payne D. A., Appl. Phys. Lett. 63(20) 2753 (1993).

[14]Yong-I. Kim, Jae Kap Jung, Kwon Sang Ryu, Mater. Res. Bull., 39 1045-1053 (2004).

[15]Song Wei Lu, Burtrand I. Lee, Zhong Lin Wang, Willian D. Samuels, J. Cryst. Growth 219 269-276 (2000).

(Received December 10, 2006; Accepted January 31, 2007)