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Basis Function Corrections in the LCVB Method 
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Start functions of a real-space density functional (RDF) approach are proposed using the results of the 
linear combination of valence bonds (LCVB) method. As the frrst step basis data of the DF calculations, 
spaial electron densities in molecules are determined with the LCVB method. For increasing precision of 
these data, the aomic orbitals are corrected with modification functions by means of the improved Rosen's 
method, where the precision is fairly increased and the virial coefficient is satisfied. 
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l. INTRODUCTION 
Quantum Monte Carlo (QMC) methods have 

excellent for accurately investigating electronic states of 
molecules and solids except for loads of a large amount 
of computations. [IJ Opposite to such methods, our theory 
has pmpose to perform the works in brief calculations 
using simple and analytical functions. In this paper, 
simple formulations (igpored for a long-long time) are 
introduced as the modified Heitler-London (HL) 
theories[ZJ·[SJ, which results are adaptable to start up 
calculations of the density functional theories (DFTj61. 
HL£21 formulated the hydrogen molecule using two 
direct hydrogen atomic orbitals. These results have not 
enough accuracy as like the ground state of -30.4 eV, the 
atomic distance l.5la0 and the virial coefficients 
U/T=-2.32 for the observed values £ 0=-31.96 
=-27.21-4.75 eV, l.40a0 and -2, respectively. The 
quantities are a0: the Bohr radius, U: the potential energy 
and T: the kinetic energy. After this, N. RosenT31 
improved this formulation and showed the good results 
(-31.23 eV, 1.416a0 and -2.0) with the brief corrections. 
Then, H. M. James and A. S. Coolidge (JC)[41 showed 
the almost exact results (-31.90 eV, l.40a0 and -2.0) 
using the two-electron orbitals consisted of 13 terms 
applied the Hy lleraas variational calculations. In recent 
studies, J. S. Sims and S. A. Hag;trom (SH)lSl showed 
the very precise results (-31.958 eV, l.40a0 and -2.0) 
using the 7034 term orbitals followed the above JC 
algorithm. Thus, the algorithms based on the HL theory 
build up the excellent molecular orbital theories beside 
the Gaussian, the DFT and the QMC theories. 

The Hamiltonian of two-atom molecules becomes 
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and satisfies the quantum theory: 

HAB '¥ AB(ri, r2) = E'J' AB (ri ,r2 ). • •••••••••••••••••••••••••• (2) 

This equation (2) becomes the driving algorithm in most 
of molecular orbital theories as the frrst principle. In N 
electron systems, the N kinetic energies and the full 
potential interactions are taken into account in the 
Hamiltonian, and the N-electron wave function satisfies 
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the equation (2). The wave function must saisfY the 
same energy minimum sate everywhere. The above 
theories should give this result at the fmal precision 
stage. 

Thus, these molecular orbital theories have the each 
pm:pose as how to get the exact results, how to calculate 
easily, how to represent simply etc .. Our theory i.e. the 
linear combination of valence bonds (LCVB) 
method[7J·[9J has the putpose as how to get the good 
results in simple and short calculations. The basis 
processes of the modifications are represented in §2 and 
the results are compared with each other in §3. In §4, the 
density of states in a nanotube is shown as an example 
of the LCVB method. 

2. BASIC FORMULATION 
2.1 Basic algorithm for adapting atomic orbitals 

The atomic orbitals are directly obtained from the 
SchrOdinger equations of atoms; 

................................... (3) HA=....:.:.._{- ao 'i712 -~}' 
4Jr&o 2 TAJ 

ii A~A(r,) = E~A(rJ • •...........•...•...............••....•.....•.. (4) 

By supetposing the modification functions j{r) to these, 
the corrected atomic orbitals functions 

rpA (r
1
) = f(r1),P(Ij) •••.•..••.•••••••••••.•••••••••••••••.•••••••••.• (5) 

are obtained analytically. The molecular orbitals of the 
bonded A-B atoms are equated using these functions as 
the bonding state 

'I'AB(I,2)= ~{rpA(!j)rpB(rz)+rpA(rz)rpB(rJ)} .(
6

) 
2(1 +s1) 

under the HL algorithm, where the front term is 
determined with the normalization condition 

Jf 'l'~B(ri ,rz)'I'AB (ri ,rz)dVIdVz 

=<'!'AB i'I'AB >=1 .................................... (7) 

and the overlap integrals 

SAB = frpA (r1)rp8 (ri)dVI· •••••••••...••.••.••.•.••••••••••• (8) 

In ( 6), the anti-bonding state is equated by setting the 
sigp as - in the bracket. 

2.2 Examples of the hydrogen molecule 
As simple examples, several cases of the hydrogen 
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molecule are discussed below. The coordinates and the 
distances are represented using the atomic position 
vector of AB atoms beingRA8=Ri as 

'Al"~xf+yf+zf' 'az"~(R-x2 f+y~+z~ · ...... (9) 

Using these coordinates, the orbitals of hydrogen atoms 
are equated as 

-' (r) _ 1 -rA11b, -' ( ) _ 1 -r82 /b •••••••••••••• (10) 
"A 1 - --,--:e 'I'B 'z - ~e 

vtrb3 "trb3 

where b=z!a0 means the molecular Bohr radius including 
the effective chargez. 
Simplest case 

The simplest case of j(r )= 1 in ( 5) has already the 
minimum energy E=-31.00 eV, distance R-1.416a0 

and the virial coefficient UIT= - 2.0 at Fl.l67 
(b=0.857a0). This effective charge z is lager than 1 and 
should be realized as the space shrinkage effect of the 
quantum motion in the molecule. 
N. Rosen 

Soon after the HL work, N. Rosen showed the 
improved results using the modified functions 

1 x1 1 R-x1 fA(Ii)" r.--:;-(1+a-), fn('i)= r.--:;-O+a--) 
v1 + a 2 b v1 + a 2 b 

········································· (11) 
as E=-31.249 eV, R=l.416a0, and U/T=-2.0 at 
a=0.095 and z=1.181 (b=0.8466a0). 

This work 
By improving the Rosen's functions as 

I x1 xl a(y' 'l fA(r,)= r.{l+(a-+c-
2

)e- +z ) 
vA b b ' 

I R-x (R-x1)
2 

-d( 2 2 

fA(r,)=.JA{l+(a-b-1 +c b
2 

)e y+z)), 

......................................... (12) 
we obtain the more fitted results: E=- 31.290 e V, 
R=l.40ao, and U/T=-2.0 at a=0.12, c=0.02, d=O.ll and 
Fl.l86 (b=0.8432a0 ). The value A is the normalization 
constant being determined numerically. 

2.3 Closely exact theory 
The JC method is represented here as the fmal stage 

of the HL algorithm, but not adapted now with the above 
reasons. If one could find the simple modification rules 
with the style of(5) (6) in this method, one should apply 
such modifications. Using electron positions 

.-4 = (rAI + rBI)/ R, A.z = (rA2 + r82 )/ R, Jli = (rA1 -rBI)I R 

Jlz=(rA2 -rB2)1R, p=2r12 1R, ......•..................... (13) 

the trial functions ofthe singlet spin state are equated as 

F;AB(rl>rz) = e-8
(),+-1,) '4"' i;.'JL{' JL;'pP', 

F;AB(rz,fi) = e-8
(-l,+A,) .<;'' i;'JL;' JL{' pP', 

If!; (r,,r
2

) = A:- {F;AB(r
1
,r

2
)+ F;AB(r

2
,r

1
))' ••••••••••••••••• (14) 

.ya; 
where the integers m, n, j and p are selected in the 
natural numbers {0,1,2}. The first and the second terms 
have the exchange relation as in (3). The normalization 
constants a1 are determined with S11 =1 in the overlap 
integrals 

Jflfl;(r1,r2 )1f/,•(r1,r2 )dV!dVz =<If/; I If/;• >=S11 ,, •••••••• (15) 

and the molecular orbitals are produced as these linear 
combinations: 

I'I'AB >=Ic;llf/; >' ................................................ (16) 
i=l 

Using each energy evaluation 

JSip;' (r" rz)H Anlf/AI'I ,rz )dVjdVz ................ (17) 

=< If/; I ii AB I if!;• >= Hii' 

and the above overlap integrals Sii', the eigenvalues E 
and the coefficients c1 are obtained as the solution of the 
secular equation: 

[H.,- ES.., ]= o . ................................................... (18) 
In thJs solution, the lowest value E0 gives the required 
minimum energy. The selected 13 terms of [mnjkp] in 
(14) are [00000], [00020], [00110], [10000], [10200], 
[10020], [10110], [20000], [00001], [00021], [00111], 
[1000 1 ], [00002]. Recently, SH expand the molecular 
orbitals using such 7034-term 5- integer set and their 
results are almost exact. 

2.4 The one-electron density and the local energy 
Using the two-electron stae-vectors in (7), we obtain 

the one-electron density functions with the coordinate r2 

integration as 

p(r1)= J'P~(r1 ,r2 )'¥AB(r1 ,r2 )dV2 =<'I' AB I 'I' AB >2 •• (19) 

From this result and the energy value expectation, one 
can define the local energy fluctuations as like 

E(r) =<'¥I ii I'¥ > 2 T(r)+ U(r). . .•....•..•......•. (20) 
p(r) p(r) 

The seek out processes of the condition 
E(r) --tEamst ........................................•.......•..•.. (21) 

in (20) become the principal methodology in most of 
molecular orbital theories, and the virial coefficient 

< U >I< T >= -2 ................................................ (22) 
is satisfied at the minimum expected value of the total E. 

3. THE RESULTS AND COMPARISON 
3.1 The HL theory and the virial theorem 

The hydrogen molecular states by HL are represented 
in Fig.1 for clearing the situation of our theory. The 10 
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Fig.1 TheHLresults:p(r), E(r) and U/T. 
<E>=-30.4e V, R=l.51 a0 and <U>/<1>=-2 .32. 
The quantities are e&imated with Eqs. (19)-(22). 
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lines in Fig. I show the trace ofthe quantity on x-axis at 
Yn=ao(n+~)ln~o.L9 with z=O and ~=0.025. In these 
results, the local energy distribution and the virial 
coefficient are not good, but they are improved with the 
brief corrections in the next section. 

3.2 Results in simple, Rosen' s and our methods 
In this p~er, we tzy to get the good condition of the 

Eqs. (20) (21) using the atomic orbitals. In this stand, we 
do not perform the precise variational calculations in 
§2.3. It might be easy to turn to the DFT from our results 
for making up the precision. 

The results of(l9) and (20) in the hydrogen molecule 
using the modification functions in §2.2 are shown in 
Fig.2 and Fig3. The simple and the Rosen's results do 
not give the observed value of R, but our result satisfies. 
The I 0 trace lines in the figures are the same in Fig. I. 
The energy fluctuation E(r) is required to be the flat 
constant under the adjustment of the density distribution 
P (r). The problem is how to get such state in short 
calculations. In comparison of these in Fig.2, the density 
corrections are to say small, where the energy 
fluctuations are improved fairly well in our method as in 
Fig.3, where the modification of (c) is shifted to z=1.20 
(0.8315 ao) for the smoothness. Opposite to infmite aria 
fluctuations in the Rosen's results, our results converge 
into nearly Eo. In all cases, the fluctuations in the space 
between two atoms are large and the electron densities 
are required to increase on the atomic space of the AB 
line. 

The distributions of the virial coefficient do not 
change largely between Fig. I (c) and Fig.4, and seem to 
have not important meaning in some applications. 
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Fig.2 The calculated density distributions ofH2 
The densities are resuhs of ( 19). The modification 
functions are (a)j=l, (b) (11) of N. Rosen and (c) (12) 
of ours. The rift\! peaks of (a) and (c) are just different 
from 1.4ao of the observed value, but (c) satisfies. 
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Fig.3 The calculated energy fluctuations ofHz 
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Fig.4 The calculated virial eo. distributions ofHz 
Our resuhs are &lawn and other resuhs are similar. 

3.3 The practical functions in the LCVB method 
One can fmd mysterious quantum phenomena as 

complex number fields represented in wave function 
f/.I=V10(r)exp{i(p·r-Et)!n}, where the momentums are 

determined by -"h'Vlfl = Pf/.1 with the phase factors. In 
the angular momentum quantization of hydrogen orbitals, 

the eigenfunction r,m(O.tfi) of spherical angular terms 

includes the angular function eimr which produces 
important relations in the quantum themy. Concerned 

with the angular momentum i, the angular momentum 

kinetic energy is represented with l 2 -'>l(l+l). Such total 
energy is equated using this and the function of the 
radius rk =lr-Rk I about the force center Rk as like 

n2 
2 n2 d2 2 d /2 . (23) 

--V tfik(r)= --(2 +--- 2 )!Vr)=TIA(r) 
2m, 2m, dr 1'k dr r< 

In maters including valence p orb1tals with the angular 
momentum l=l, electron motions of sp2 and sp

3 
hybrid 

orbitals become something circular near the force 
centers, and the T also include the rotational motion 
energies mixing with the divergent terms. In the LCVB 
method, these angular momentum factors are treated 
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with the complex number functions e''"" in X-Y plane, 
and the needed interaction energies are determined semi­
empirically. The basis eigenvectors l<f>.(r.,r,)> are 
created from the bonding states as like the hydrogen 
molecule. The effective charges ZA in Eq. (3) is obtained 
with 

ZA=km, ...................................................... (24) 

for the function of a principal quantum number k, where 
EA is determined from the observed values. In this 
process, the simple case corrections in §2.2 are already 
included in such effective charges. 

The sp 2 functions are composed of 2s and 2p 
hydrogen-like atomic orbitals t/lk(r) calculated from the 
SchrOdinger equations in (3)-(4). Here, the 2s, 2px, 2py 

and 2pz atomic orbitals are denoted by fls, flx, fly and 

flz , respectively. The hybrid orbitals Xi of sp 2 are 

represented using the atomic orbitals fl1,;: 

I f2 
x,,k(r)= .fjr/J,.k(r)+'Jix,k(r), ......................... (25) 

X2.k(r)= )Jr/J,,k(r)- ~r/Jx,k(r)+i*fJy,k(r), .. (26) 

X2,k(r)= )Jr/J,,k(r)- ~r/Jx,k(r)-i Jzr/Jy,k(r), .. (27) 

x,,k(r)=r/Jz,k(r), ................................................... (28) 

where i is the imaginary number of eim'. Here, instead 
of the atom number A and B in (3), we use the site 
number k and I for the bonding states of molecules; 

1 
\:flklrl,r2) = r:- {f(lj ,r2)X1,k (lj )X1; (r2) 

...;akl 

+ f(1j,t2)X;,k (r2)X1; (rl)} 
................................................................................ (29) 

where f and i are the modification terms as like in 
(12). The related Hamiltonian in the least terms of two 
bonding states is composed of two kinetic energies, four 
atomic sites and two electrons. The each eigenvalue 
produced from the interactions in the system must 
satiszy the virial theorem, and then the interaction 
energies Hki,mn including TkL,mn and Ukl,mn must satiszy 
the virial theorem i.e. Hkl,mn< 0. 

4. AN EXAMPLE OF A NANOTUBE 
As the basis functions of the LCVB method, the 

modification functions in §2.2 are applied and the 
density of st:tes (DOS) in carbon nanotube (CN) is 
investigated. As long as using the semi-empirical 
parameters, the calculated DOS is not so largely 
different in the modifications, but electronic charge 
densities and detail arguments differ and follow the 
preciseness. As for CN and graphite, the DOS center 
generally must become -17.6 eV from the total of the 
atomic levels and the bonding energies. The Fermi level 
lays at -4.56 eV below the vacuum states as shown in the 
Fig. 5 of the experimental data [JO] Adaptation of the JC 
method in §2.3 to the general molecular orbitals is not 
performed in this work because of the labors. 

In our previous work [9], the conduction band 
structures near the vacuum level of CN was not 
explained with enough clearance, where the Hubbard 
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Fig. 6 Density of states in carbon nanotube. 
Calculated DOS using and the LCVB method With the 
simple correction. The conduction band and the gap 
states are based on the 3s excitation: 

model excitation is adapted. In this work, the excitation 
level is altered to the 3s orbitals and the full DOS is 
obtained with the reliable structures in Fig. 6 (where the 

semi-empirical parameters are set to a •.• = a,._,= 1.2, 
P1f-ex=0.96 and Pex-ex=0.76 adjusted in benzenei91 , which 
are compared to the experimental data of Fig. 5 in nice 
fitting. 

By improving the basis orbitals of the LCVB method, 
the charge density distributions become close to the 
practical states. Thus, the adaptations of these results to 
the DF calculations become reasonable, and such full 
real space DF calculations should be very easy and 
useful compared with a lot of k-space methods. 
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