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Positron diffusion and fluctuations around positrons in liquid metals 
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We have introduced effective Lagrangian with spontaneously broken density (the hedgehog-like fluctuation) and 
the massive internal gauge fields. It is suggested that the temperature dependence of the positron diffusion length 
in the liquid In and Bi metals is described with the restoration of the spontaneously broken density around the 
positrons due to increasing of temperature. 
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1. lNTRODUCTION 
The study of liquid and amorphous structures is of 

significance for scientific and technological reasons. 
However, our knowledge of the liquid and amorphous 
structures is much less than our knowledge of the 
crystalline structures. This is due to the fewer techniques 
available to study liquids and amorphous materials. The 
dynamical properties of charged particles in liquids are 
of importance for understanding chemical reaction in 
fluids. 

Since fluctuation from the equilibrium medium is 
preferable in the liquid phase, localization of charged 
particles such as positrons is highly probable [1,2]. Free 
energy density functional theories [3,4] provide 
self-trapping as a solution of the charged particle in a 
given host fluid. It is well known that positrons are 
strongly sensitive to vacancies and other open-volume 
defects in materials [5]. Because of the irregular 
arrangement of ions, a liquid can have regions of low 
ion density similar to vacancies or voids in solid 
materials. Thus positron can be an ideal probe for the 
structure and dynamics of these regions in the liquid 
phase. The sensitivity of positrons to changes caused by 
melting has already been reported by angular correlation 
[6-8] and lifetime [9,10] studies. Gramsh et al. [11,12] 
have measured temperature dependence of diffusivity of 
positrons in Ga, Bi, In, Na, Sn, and Pb in both solid and 
liquid states by means of a slow positron beam. They 
observed quite different behaviors of the diffusion 
length, L+, of positrons in solids and liquids. On melting, 
L+ decreased remarkably, while it increased with 
temperature in the liquid phase. These results suggest 
strongly that a different mechanism is involved in the 
interaction of positrons with the liquid. Seeger [13] has 
proposed that the interaction of the positron in a liquid 
state is via two polaronic states, with large effective 
masses that depend on the materials. 

Kanazawa [14,15] has presented a qualitative 
explanation for the increase with temperature of the 
positron diffusion length in liquid metals. In this model, 
as the temperature increases, the effective mass of the 
positron decreases due to the restoration of the 
spontaneously broken density around the positron . In 
this study, we will compare the positron diffusion length 
of In metal, which has vacancy trapping effect of 
positrons in solid state, with that of Bi metal, which has 

271 

no positron-trapping effect into vacancies in solid phase, 
from the view point of the theoretical formula [ 15]. 

2. GAUGE THEORY OF DISORDERED 
MATERIALS AND A MODEL SYSTEM 

Liquids or amorphous substances are characterized by 
spatial fluctuations of the internal parameters (the local 
configuration, the curvature, etc.) of the constituting 
elements (matter field). Also, these substances are 
organized in space (they fill space with short-range 
order) so that a local transformation of an element 
should necessarily affect its immediate neighbors 
through the connection or gauge field Aw Gauge 
invariant is the symmetry of disorder. Liquids and 
glasses are disordered substances, and can be 
represented as a fiber bundle [16], because a gauge field 
is, geometrically, a connection in a fiber bundle. A fiber 
bundle consists of a base space, a total space, and a map 
that projects every point of the total space onto a point in 
the base space. The set of all points in the total space 
that are mapped onto the same point in the base space is 
called the fiber. The connection, or gauge field, 
describes how the orientation of the fiber changes as one 
goes along a path in base space, or how the path in the 
base space is lifted into a path or the fiber bundle. In 
liquids and glasses, this connection (gauge field), AI', is a 
natural and physical one. If internal parameters (matter 
field) p(x, y, z, u) are given everywhere in a continuum 
(the Euclidean space R3

), this defines a mapping 
between R3 (base space) and manifold M of states of the 
internal parameter (the fiber of bundle). 

There is growing evidence that the short-range order of 
metallic liquids and glasses is predominantly icosahedral 
[17]. Long-range correlations in the orientations of 
icosahedral packing units appear in large "amorphon" 
cluster models of structure in metallic liquids and 
glasses [18]. 

We shall introduce icosahedral order in 
three-dimensional liquids. Due to the impossibility of 
tiling flat space with icosahedral in the base space in 
three dimensions, one looks for ideal translation on the 
surface 83 of a sphere in the total space in four 
dimensions [19,20]. The symmetries of the sphere S3 
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form the rotation group SO( 4 ). 
Extending this theoretical formula, Kanazawa has 

introduced the effective Lagrangian in the 
gauge-invariant formula with spontaneous symmetry 
breaking for two dimensional and three dimensional 
metallic liquid and glasses, and has discussed the origin 
of the boson peak, the melting, the glass transition, and 
the viscosity of the supercooled metallic liquids [21-26]. 

Now, we introduce a field-theoretical model to treat 
the problem of a charged particle in a fluid host in three 
spatial dimensions. It has been proposed that the 
parameter p(t, r, u) = p(t, x, y, z, u) in three-dimensional 
liquids is specified by the rotation, which is related to 
gauge fields A,u of S0(4) symmetry of S3 [19,20]. The 
curvature can be represented by using a component, u, in 
the other-axis direction, if the three spatial dimensional 
axes are x, y, and z. It is preferable that we think of the 
anomalous fluctuation around the charged particle in the 
three-dimensional liquid as the curvature. We adopt the 
parameter p(t, r, u) = pa (a= 1, 2, 3, 4), which is similar 
to that in the Sachdev and Nelson model [27]. The 
S0(4) quadruplet fields A,u are spontaneously broken 
through the Higgs mechanism similar to the way in 
which the fluid host is broken around a charged particle. 
When the hedgehog-like fluctuation (soliton) around a 
charged particle is created, we set the symmetry 
breaking of the quadruplet fields, <OIPIO>, equal to (0, 0, 
0, v4). 1f1 is the wavefunction of a positron. It is known 

that Lagrangian formation is more transparent in order to 
treat the quantized Yang-Mills fields [30]. Now, we can 
introduce the approximate Lagrangian as follows, 

L ='I'+ (io0 - g2ra A;)'!'--
1
-'1'+ (i'V- g2ra A;,.0 )

2 1f1 
2m 
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(1) 

The first and second terms describe the gauge-invariant 
interaction between the gauge fields A,u and 'I' Fermi 

field of the charged particle through covariant 
derivatives. The third term describes the standard 
Lagrangian of the Yang-Mills gauge fields Aw The 
fourth term describes the gauge-invariant interaction 
between the gauge fields All and the Bose fields p • 

through covariant derivatives. The fifth and sixth terms 
describe the effective potential for the Higgs effect. 
Then, we set the symmetry breaking as follows, 
Pa ~ (0, 0, 0, V4) + (p1,/,/,p4

). 

Thus, we can introduce the effective Lagrange density, 
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Where m1 is v4 • g and m2 is 2 • (U3)
112v4 • The effective 

Lagrange density, Leffi represents three massive vector 
fields A ,u 

1
, A p 

2
, A ,u 

3
, and one massless vector field A ,u 

4
• 

The generation function Z[J] for Green's functions is 
shown as follows; 

Z[ J 1- JDADBDpDcDcDifi+DifiX 

expi Jd
4
x(Leff + LGF+FP + J ·<I>) 

L = Ba(J" A a +_!_aB" Ba + ic"d" D ea GF+FP 11 2 11 
, (3) 

where Ba and ea are the Nak:anishi-Lautrup (NL) fields 
and Faddeev-Popov fictitious fields, respectively, 

J ·<I>= 1"11 A; +J;B" +JP· p" +W+77'1'+ 

(4) 
BRS-quartet [28,29] in the present theoretical system are 

( pl,BI,cl,d) ( p2,B2,c2,c2) ( p3,B3,c3,c3) 

( A1.wB4 ,c4 ,c4 ) 

where AI., ,u 
4 is the longitudinal component of A p 

4
• So we 

need these fields for the unitality condition, although 
these fields are unobservable and fictitious ones. The 
masses of massive gauge fields A ,u 

1
, A ,u 

2
, and A ,u 

3 
are 

created through the Higgs mechanism through 
introducing the hedgehog-like clusters (solitons) induced 
with a charged particles such as positrons on the fluid 
host. Thus, the massive gauge fields A p 

1
, A ,u 

2
, and A ,u 

3 

are localized around the hedgehog-like cluster, where a 
positron is trapped. It is known that the effective masses 
of positron in liquid Ga and Bi become of the order of 
the proton mass [13]. It is suggested that the 
spontaneously broken density (the hedgehog-like 
fluctuation) and the massive gauge fields, which are 
induced with the positron, contribute strongly to the 
remarkable increase in the positron effective mass in the 
fluid host. Thus, the positron, and the spontaneously 
broken density (the hedgehog-like fluctuation) and the 
massive gauge fields, which are induced with the 
positron in liquid metals, might be thought of as a kind 
of complex particle. 

The thermodynamic potential is derived from the 
partition function. That is, Q(T, v4) = -TIn Z/V. In the 
mean field and high temperature approximations, the 
thermodynamic potential can be introduced as follows, 

Q(T,v4 ) = ~v: + [( ~ + 8
8

2 

)T
2 -c; 1v1 

8 2 2 2 
--tr2T4 -(s._T2 +~T2) 

90 6 16~ 
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From Eq. (5) it is seen that the thermodynamic potential 
is a function of v4 and temperature T. As temperature 
increases, the minimum of the thermodynamic potential 
shifts to smaller values of v4, and the minimum becomes 
less deep. The location of the minimum is 
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Although in three spatial dimensions we cannot 
determine quantitatively the mass M,ff of the positron in 
the field host in the present theory, it is assumed that the 
effective mass M,ff depends approximately linearll on 
the sum of the effective mass m2 of the excitation p and 
the massive gauge fields A .a\ A/, and A/ which are 
localized around a positron in the fluid host. We can 
evaluate the effective masses m1 and m2 from Eq. (2). 

2 2 2 4 I 

m =[gl c3 -(L+-g-)T2]2 
I 2~ 6 16~ 

4 2 I 

m =[4c2 -(-1 +L)T2 ]2 
2 3 3 /':) 2 

In order to simplify the discussion, we shall consider 
only the mass of/. The diffusivity D+ of positron is 
introduced approximately from the Einstein relation, 

D =~ kBT roe kBT·r 

+ 3M,ff [4c2-(~1 +£)T2}Yz 
3 3 /'3 2 

(6) 
where t is the relaxation time, for example, the phonon 
relaxation time is rph- T 312

• 

Restoration of the spontaneously broken density 
reduces the effective mass M,ff as temperature increases. 
From Eq. (6), it is seen that the diffusivity D+ increases 
with temperature. 
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Fig. 1 Positron diffusion length versus temperature in 
the solid and liquid In and Bi metals. The open circles 
and solid squares are data points [12] in In and Bi metals, 
respectively. 

We have analyzed the positron diffusion length data 
[12] in In and Bi metals. Figure 1 shows positron 
diffusion length versus temperature in the solid and 
liquid In and Bi metals. Open circles and solid squares 
correspond to data points of In and Bi metals, 
respectively. The solid lines show the fitting ones by 
using Eq. (6). It is suggested that the temperature 
dependence of the diffusion length for both liquid In and 
Bi metals is described well with the restoration of the 
spontaneously broken density due to temperature. The 
interesting point is that the diffusion length drops 
discontinuously at the melting temperature in Bi metal 
and on the other hand the diffusion length in In metal 
decreases gradually from - 300K to the melting 
temperature. In the case of solid In metal, more 
positrons are trapped into thermal vacancies as 
temperature increases. Thus the diffusion length in solid 

In metal decreases gradually from -300K to the melting 
temperature. This suggests that the spontaneously 
broken density state in the liquid phase of In metal near 
the melting point seems to be vacancy-like. 

3. CONCLUSION 
We have analyzed the positron diffusion length data 

of the liquid In and Bi metals, taking into account the 
restoration of the spontaneously broken density around 
the positron due to increasing of temperature. Then we 
have compared the positron diffusion length of In metal 
with that of Bi metal. 
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