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Determining electron density in a material model-independently by X-ray diffraction has been a critical 
problem and actively studied since the middle of the 20th century. All the information that can be 
experimentally obtained by X-ray diffraction is only on intensity distribution, so that the information on the 
phase of scattering amplitude is lost, which prevents us from retrieving electron density 
model-independently. This is the so-called 'phase problem'. The phase problem in surface and interface 
crystallography has been one of interesting subjects in recent years. The present paper will focus on recent 
progress in solving the phase problem in surface and interface crystallography. 
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1. INTRODUCTION 
In the X-ray crystallography determining electron 

density in a material model-independently has been 
studied for a long time. Electron density can be 
determined by the Fourier transform of the complex 
scattering amplitude of the material. But all the 
information that can be experimentally obtained by 
X-ray diffraction is only on intensity distribution, so that 
the information on the phase of the scattering amplitude 
is lost. This makes it difficult to retrieve the electron 
density model-independently. Since the middle of the 
20th century, many solutions to this 'phase problem' 
have been proposed, including direct methods [1-2], 
multiwavelength measurement [3], multibeam 
techniques [4], and X-ray holography [5,6]. 

The phase problem in surface and interface 
crystallography has been one of interesting subjects in 
recent years. Since the interaction of X-rays with a 
material is much smaller than that of electrons, structure 
analysis of crystal surface using X-ray diffraction is not 
possible without high intensity X-ray sources. Use of 
X-rays allows easy-to-interpret and high-precision 
analysis, which is generally difficult in the analysis of 
electron diffraction due to multiple scattering. Since the 
advent of the synchrotron radiation sources in the early 
1980s, X-ray diffraction analysis has become a powerful 
tool for the structure analysis of crystal surface [7-11]. 
In the surface X-ray diffraction analysis, intensity 
distribution along crystal-truncation-rods (CTRs) [8] 
perpendicular to the crystal surface is measured, and 
compared with that calculated for several structure 
models which are physically possible. To determine 
three-dimensional atomic coordinates or, ultimately, 
electron density of crystal surface model-independently, 
the phase of the scattering amplitude along the CTRs has 
to be retrieved, which is the reason why conventional 
methods for solving the phase problem in X-ray 
crystallography cannot be applied to the surface X-ray 
diffraction analysis as it is. Various special methods 
have been developed since the middle of the 1980s, and 
more actively studied for the last decade. This paper will 
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focus on the recent progress in solving the phase 
problem in surface and interface crystallography. 
Several special and general methods are introduced, 
including the heavy atom method [12,13], the X-ray 
multibeam technique [14-21], and direct methods 
[22-36]. 

2. HEAVY ATOM METHOD 
In the X-ray crystallography, the situation where there 

is one heavy atom per unit cell is desirable because it 
can help to solve the phase problem [37]. If the heavy 
atom is taken to be at the crystallographic origin, the 
phases of all structure factors are close to zero. As a 
result the Patterson (pair-correlation) function, which is 
calculated directly from the experimentally obtained 
intensity by the Fourier transform, is then very similar to 
a Fourier electron density map of the structure. This 
heavy atom method has been also applied to surface 
structure analysis [12, 13]. Recently I.K. Robinson et al. 
applied the method to the structure analysis of quantum 
wires in Au/Si(557) [13]. They showed from X-ray 
diffraction data that the unit cell contains one Au atom 
and several Si atoms. For this structure the strongest 
peaks (apart from the origin) in the Patterson map 
correspond to Au-Si vectors; the Au is referred to as an 
"imaging" atom [37]. In Fig. 1 the Patterson map is 
given. This map is a superposition of the (x,z) and (-x, 
-z) Si positions with respect to the Au at the origin. The 
Patterson map suggests specific atomic models, which 
can then be tested directly with the measured X-ray 
diffraction data. The model read off from the Patterson 
map is shown in Fig. 2. The step-edge Si atom identified 
as "B" in both Figs. 1 and 2 (b) has very little density in 
the map and is a clear candidate for omission; for this to 
happen, the edge could reconstruct by forming 
five-membered rings as shown by the dashed bonding 
line. The additional peak marked "C" is near the correct 
position for an "adatom" that could accommodate three 
otherwise dangling bonds on the terrace in every other 
unit cell (along y), thus appearing to have an occupation 
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of 50% in the 1 X 1 cell. Models were built with 
combinations of these features and tested against the 
data using the ROD program [38] with a total of 47 free 
positional parameters, variable occupancy for the Au, 
and Debye-Waller factors (DWF) for the atoms near the 
step edge. Both the missing edge atom B and the adatom 
C were supported upon refinement of all the atomic 
positions in the outermost two double layers of the 
structure. The best agreement without the adatom was l 
= 7.5 which dropped to l = 7.1 with the adatom 
included. The refined coordinates of the final model are 
shown in Fig. 2 (c). 

Fig.l Positive contours of the y = 0 section of the 
Patterson function obtained directly by Fourier 
transformation of the CTR intensities observed for 
Au/Si(557). The map has twofold rotational symmetry 
about the origin (x = 0, z = 0) (peak suppressed), and 
about the center (x = 1/2, z = 0), as shown by diad 
symbols. Because the unit cell is centered, they = 1/ 2 
section can be obtained by a shift of 112 in x. The 
interpretation drawn assumes Au at the origin and Si 
atoms at all the other peaks. This identifies the 
termination (dashed line). (Reprinted figure with 
permission from [13]. Copyright 2002 by the American 
Physical Society). 

3. MULTIBEAM TECHNIQUES 
In X-ray multiple diffraction where more than one 

Bragg reflections are excited simultaneously, the 
intensities of the diffracted beams depend on the relative 
phases of the structure factors involved [4]. This fact has 
been also applied to retrieve the information on the 
phase of the scattering amplitude of surface structure 
[14-21]. Here the author introduces two examples of 
multi beam technique recently proposed. 

3.1 Two beam diffraction interference (TBDI) method 
The two beam diffraction interference (TBDI) method 

was proposed by Yacoby et al [14,15,17]. If a sample 
with a two dimensional periodicity is on a substrate or 
under an over layer consisting of heavier atom, the total 
reflection occurs at small incidence angles to the 
interface. In the TBDI method intensities along a CTR 
are measured under this condition, where the incident 
and reflected beam are diffracted by the sample and 
interfere with each other. This provides the phase 
derivative along the CTR. This method was tested to a 
GaAs/AIAs/GaAs (Fig. 3 (a)), the result of which is 
shown in Fig. 3 (b) with a result of COBRA (see the 
Section 4.1) [17]. 

Fig. 2 Structural models of the Au/Si(557) surface. The 
Au atom is drawn as a triple circle. The boxes show half 
a unit cell in both x and z and a full cell in y, offset for 
clarity. (a) Top view. (b) Side view of the model read 
directly from the Patterson map indicating the locations 
of peaks "B" and "C." (c) Final model after refinement 
of atomic positions. Atoms and bonds closer to the 
viewer are drawn with heavier lines to create perspective. 
(Reprinted figure with permission from [13]. 
Copyright 2002 by the American Physical Society). 

3.2 Method using a Bragg reflection 
A method using a Bragg reflection from the substrate 

crystal was proposed by the author. Although this 
method can be applied to a special case where the 
substrate is nearly perfect crystal, it allows a high 
precision measurement, which has led to a new 
knowledge about strain field under the Si02/Si interface 
which has never been revealed by the conventional 
X-ray diffraction measurement. Here the author 
introduces the application of this method to characterize 
the strain field under the Si02/Si(OO 1) interface. 

Our method is an application of a phenomenon, 
modulation of the intensity of the CTR scattering under 
an excitation of a Bragg reflection [18-21,39], which is 
an interaction between a CTR scattering and a Bragg 
reflection. By using this technique the author revealed 
that there is a small strain field extending over 
mesoscopic-range depth (up to several hundred of nm) 
under the Si02/Si(001) interface and having a static 
fluctuation in the lateral direction [21]. 

An example of the phenomenon in the case of the 
Si(OO 1) wafer is shown in Fig. 4, where intensity of the 
50 rod CTR scattering is modulated by the excitation of 
the 004 Bragg reflection. We showed that the 
modulation profile can be characterized by only two 
parameters: the phase shift, which represents the dip or 
peak position of the modulation profile, and the 
visibility. The phase shift is directly related to the phases 
of the scattering amplitudes of CTR scatterings, and can 
be simply interpreted into the sum of displacements of 
atomic planes under the interface, which is due to the 
strain field extending over mesoscopic-range depth, 
while the visibility gives information on static 
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Fig. 3 (a) The schematic diagram of the sample and 
scattering geometry. (b) The experimentally obtained 
electron density difference between an ideal GaAs 
semi-infinite crystal and two GaAs/AlAs samples. 
Dotted line: analysis with the phase derivative using the 
TBDI method; solid lines: analysis with the COBRA 
(see the Section 4.1). (Reprinted figure with 
permission from [17]. Copyright 2000 by the Institute of 
Physics (lOP) Publishing Ltd.). 

fluctuation of the total displacement in the lateral 
direction [21]. The solid line in Fig. 4 is the best-fit 
curve calculated, where the phase shift and visibility are 
fixed at -2nx(O.l17 ± 0.001) and 0.521 ± 0.002. Both 
the experimentally obtained values were different from 
those of an ideal perfect crystal (0 and 0.711, 
respectively), which is shown by the dotted line in the 
figure. 

Figure 5 shows an illustration of the strain field under 
the Si02/Si(001) interface which can explain the 
experimentally obtained modulation profile. The phase 
shift corresponds to the sum of displacements of atomic 
planes under the interface projected onto the direction 
perpendicular to the 004 plane (-0.16 A in the figure). 
On the other hand the visibility indicates that the total 
displacement has a static fluctuation of at least ±0.13 A 
in the direction parallel to the interface. The features 
revealed by this technique are expected to provide a new 
window to understand the oxidation mechanism of Si 
surface. 
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Fig. 4 Intensity of the CTR scattering is modulated by 
the excitation of a Bragg reflection [18-21,39]. An 
example is demonstrated in the case of a Si(001) wafer 
covered with a thermal oxide layer. The solid and open 
circles represent the experimentally obtained intensities 
corresponding to the 50 rod CTR scattering and 004 
Bragg reflection, whose scales (in arbitrary units) are on 
the right and left axes, respectively. The horizontal axis 
is the deviation in the incident angle from the 004 Bragg 
angle. The dotted line is the intensity calculated for an 
ideal perfect crystal. The solid and broken lines are the 
best-fit curves to the experimentally obtained data [21]. 
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Fig. 5 Illustration of the strain field under the 
Si02/Si(001) interface which can explain the 
experimentally obtained modulation profile in Fig. 4. 
The open circles represent to the cites of atoms or unit 
cells in bulk crystal, and the solid circles represent the 
position of them in the strained layer near the interface. 

4. DIRECT METHODS 
The aim of the direct method in the surface structure 

analysis is to guess the phase of the scattering amplitude 
along the CTRs directly from the intensities on the rods. 
Recently several methods were proposed: the coherent 
Bragg rod analysis (COBRA) [17,22,23], holographic 
imaging using intensities along integer order rods 
[24,25], the maximum entropy method (MEM) [26], and 
the methods based on the Sayre's equation [27-29], and 
the Gerchberg-Saxton and Fienup algorithms [30-36]. 

4.1 Coherent Bragg rod analysis method (COBRA) 
In a general sense the total scattering intensity can be 

considered as coherently composed oftwo contributions: 
the scattering of a known reference electron density and 
that of an unknown electron density such that the 
combination of the two yields the scattering of the 
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electron density of the real system. The reference part 
can be, for example, the known substrate and a simple 
model of the film. In this case the unknown electron 
density will be large within the film and the region of 
the substrate deformed by the film. At any two adjacent 

points along a Bragg rod differing by M 

where, S, U, and Tare the complex scattering amplitudes 
due to the reference, unknown, and total electron 
densities, respectively. We now make use of the fact that 
the complex scattering amplitudes vary continuously 
along the Bragg rods and make the approximation that at 
two adjacent points along a Bragg rod: 

This approximation is valid if U( k ) varies slowly 

relative to S(k ). Taking the absolute value of Eqs. (1) 
and (2) in this approximation yields 

(4) 

(5) 

In Eqs. (4) and (5) the absolute values squared of the 
total scattering amplitudes are proportional to the 
experimentally determined intensity. This yields two 
real equations that can be solved for one complex 
unknown. In general this pair of equations has two 
solutions and it is necessary to choose the correct one. 
The correct solutions are obtained by looking at two 
pairs of equations at two consecutive pairs of points. 
This is shown in Fig. 6. The figure on the left represents 

the equations at k - J',.k I 2 and k + M I 2 . The 
corresponding complex numbers are marked with 
indices 1 and 2, respectively. The figure on the right 

represents the equations at k + M I 2 and k + 3J',.k I 2 
and the corresponding indices are 2 and 3, respectively. 
Each pair of equations has two solutions Ua and Ub 
shown as solid and dashed lines, respectively. Under the 
assumption that U varies slowly along the Bragg rods 
the correct pair of solutions is the one that changes the 
least when going from one point to the next; namely, (in 
Fig. 6) U1a and U2a . This procedure then provides the 
unknown complex scattering amplitudes along each 
Bragg rod. The electron density can be obtained by the 
Fourier transform of the complex scattering amplitudes 
into real space. 

The usefulness of the COBRA was demonstrated by 
mapping the structure of the interfacial region of a 
Gdz03 film grown epitaxially on a (1 00) GaAs substrate 
[22,23]. Two examples of the electron-density maps 

Point I Point 2 

Fig. 6 Graphic representation of Eqs. (1) and (2) in the 
complex plane. The equations are shown for two pairs of 
adjacent points. S1 , S2 and S3 are the known complex 

scattering amplitudes at k-M I 2 , k +M I 2 , 

and k + 3M 12 , respectively. The total scattering 
amplitudes T are known only in absolute value so they 
are represented by arrows and arcs. U1a and U2., U1b and 
U2b are two pairs of solutions. The correct solutions are 
those that vary the least when going from point 1 to 
point 2. Namely, in this case U1a and U2a. (Reprinted 
figure with permission from [22]. Copyright 2002 by the 
American Physical Society). 

obtained by COBRA are shown in Fig.7. Each map 
consists of 3 X 3 GaAs 2D unit cells. Figure 7 (a) is the 
eighth layer below the interface on the GaAs side and 
Fig. 7 (b) is the ninth layer above the interface on the 
Gd20 3 side. The first map clearly shows the Ga or As 
atomic positions. The second shows the ridges and 
valleys expected from the folded structure (Because the 
periodicity of the Gd20 3 structure is a multiple of that of 
GaAs, the scattering amplitude along the GaAs-defined 
Bragg rods is the Fourier transform of the electron 
density folded into a GaAs-defined 2D unit cell). From 
such results they found that the Gd atoms in the first few 
Gd20 3 layers are locked in the substrate GaAs positions 
and that the stacking arrangement of the epitaxial film 
conforms to that of the substrate rather than that of bulk 
Gd203. 

4.2. Maximum entropy method (MEM) 
Maximum-Entropy Method (MEM) ongmates with 

the information theory developed by Shannon, and is 
based on the principle of maximum entropy first 
expounded by E.T. Jaynes in 1957 [40]. M.D. Collins 
applied this method to the macromolecular X-ray 
crystallography. Recently D.K. Saldin et al. adapted the 
MEM to the surface X-ray crystallography, and 
successfully guessed 3D surface electron densities [26]. 
In the MEM the most probable distribution that is 
consistent with the experimental data is searched, which 
is attained by the Bayesian theorem of conditional 
probabilities. The detailed algorithm of the MEM is 
reported in the literature [26]. In the use of the MEM 
one has to be careful for the final result not to overfit the 
data, which often lead to unphysical results. This method 
was successfully applied to the structure analyses of 
K/Ag(001), 01Cu(104), and GaAs(2x2) [26]. 

4.3 Method based on the Sayre's equation 
A way to extend the direct method based on the 

Sayre's equation [42] that has been used in the X-ray 



Wataru Yashiro et al. Transactions of the Materials Research Society of Japan 33[3] 551-556 (2008) 

0 

Y(A) 

(a) 

-5 0 

Y(A) 

(b) 

Fig. 7 COBRA electron-density maps of Gd20 r GaAs 
(100) epitaxial structure. Low density, cold colors; high 
density, warm colors. (a) Eighth GalAs monolayer 
below the nominal interface; (b) Ninth Gd20 3 layer 
above the interface. The black dots are the folded bulk 
in-plane Gd positions. Y and Z denote the position 
with in a particular plane parallel to the interface. 
(Reprinted by permission from Macmillan Publishers 
Ltd: Nature Materials [23], copyright 2002). 

crystallography to the surface structure analysis was 
proposed by L.D. Marks [27,28]. In his approach a set of 
phases is determined with the lowest figures of merit, 
which is most cons istent with the measured 
experimental data, using statistical (probabilistic) 
relationships between the modulus and the phase of the 
scattering amplitudes. In the phase recovery process 
positivity (the electron density must be real and positive) 
and ' support constraint' (the surface charge density 
nom1al to the surface must be zero except in small 
region near the surface) are imposed . Here experimental 
data has to be sampled along CTRs at a frequency 
greater than twice that required by the size of the support 
region. By this approach scattering potential maps and 
candidate structures can be generated from the 
experimental data without the need for a structure guess 
(an example is shown in Fig. 8 [29]). 

4.4 Method based on the Gerchberg-Saxton and Fienup 
algorithms 

The algorithm [30-36] originates w ith the iterative 
phase recovery strategy of Gerchberg and Sax ton [ 43] , 
Fienup [ 44,45], which is also applied to the X-ray 
diffraction microscopy [46] and the coherent X-ray 
diffraction imaging for nanocrystals [47]. The iterative 
phase recovery algorithm is depicted in Fig. 9. Initially, 
a random set of phases { rf; } is assigned to the 
experimentally observed structure factor amplitudes 
{IFobsl} . After subtracting the calculable bulk 
contribution {8}, a Fourier transform renders an 
estimate in real space of the electron density {t} in the 
near-surface region. 

Next invoke a physically reasonable constraint 
(spatial support) is imposed: the surface electron density 
must lie only within a few angstroms of the surface, 
giving an improved estimate { u} of the surface electron 
density. Then, an inverse Fourier transfonn of {u} , 
namely the set {Seal} of surface structure factors is added 
to the calcu lated bulk contribution {B}. The arguments 
of the sums represent improved estimates of the phases 
{ rf; }. A constraint in reciprocal space is finally imposed 
by assigning these phases to the experimentally 

Fig. 8 [(a)-(c)] Electron density maps for the centered 
(6x2) unit cell from SXRD direct methods at z = 3.6 A, 
z = 2.8 A, and z = 2.0 A above the first bulklike Ti02 

layer, respectively. Regions of high electron density 
(possible atomic sites) are yellow (light). (Reprinted 
figure with permission from [29]. Copyright 2007 by the 
American Physical Society). 
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Fig. 9 Schematic flowchart of the iterative algorithm. 
(Reprinted figure with permission from [32]. 
Copyright 2005 by the American Physical Society). 
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Fig. I 0 [1 T 0] projection of the recovered electron 

density. The (2 x I) surface unit cell is repeated three 
times. The black balls on the left are shown at 
bulk-terminated locations, while those on the right are 
positioned according to conventional l refinement. 
(Reprinted figure with permission from [32]. 
Copyright 2005 by the American Physical Society). 

observed structure factor amplitudes {IFobsl}, and the 
cycle is repeated. Thus, by alternately imposing these 
constraints in real and reciprocal space, {u} converges 
with a solution that is confined to the near-surface 
region and agrees with the experimental scattering data. 
It is not assumed that scattering arises from atoms, but 
rather recover the continuous charge density. This 
algorithm successfully provided initial guess of structure 
of the well-known Au(ll 0)-(2 x I) [32,33] (see Fig. 1 0), 

Sb/ Au(ll 0)-c(2 x2) [33,34] , and Sb/Au( 11 0)-( .J3 x .J3) 
R54.7" [33 ,35] surfaces. This approach was also 
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combined with the algorithm based on the Sayre's 
equation (the tangent fonmlla iteration scheme) briefly 
described above [36]. 

5. SUMMARY 
We have focused on recent progress in solving the 

phase problem in surface and interface crysta llography. 
Various phase recovery methods have been proposed. 
Use of special methods, such as the heavy atom method 
and multibeam techniques, is limited to special sampl es, 
but, in some cases, much information on the surface 
structure may be inherently contained in the 
experimental data, which allows us to analyze 
complicated structures with high precision. General 
methods based on the Sayre's equation, and the 
Gerchberg-Saxton and Fienup algorithms are powerful 
tools, and, by combined with rapid measurements 
[48,49], they will make it possible to realize quick 
structure analysis of crysta l surface. 
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